The integrability condition:
P(∂Q/∂z−∂R/∂y)+Q(∂R/∂x−∂P/∂z)+R(∂P/∂y−∂Q/∂x)=0
z(z−y)(x+2z−x)+z(x+z)(2x+y−2z+y)+x(x+y)(−z−z)=
=2z2(z−y)+2z(x+z)(x+y−z)−2zx(x+y)=
=2z3−2z2y+2zx2+2zxy−2z2x+2z2x+2z2y−2z3−2zx2−2xyz=0
The equation is integrable.
z(z−y)dx+z(x+z)dy+x(x+y)dz=0
This equation is homogeneous.
Px+Qy+Rz=z(z−y)x+z(x+z)y+x(x+y)z=
=z2x+z2y+x2z+xyz=D=0
Integrating factor:
D1=z2x+z2y+x2z+xyz1
Then:
z2x+z2y+x2z+xyzz(z−y)dx+z(x+z)dy+x(x+y)dz=z(x+y)(x+z)z(z−y)dx+z(x+z)dy+x(x+y)dz=0
(x+y)(x+z)(z−y)dx+x+ydy+z(x+z)xdz=0
d(ln(x+y)−ln(x+z))+x+zdz+z(x+z)xdz=0
d(ln(x+y)−ln(x+z))+z(x+z)(x+z)dz=0
ln(x+y)−ln(x+z)+lnz=lnC
x+zz(x+y)=C
Comments