Question #159067

Verify that the total differential equation z(z-y)dx+z(x+z)dy+x(x+y)dz=0 is integrable and hence find its integral


1
Expert's answer
2021-02-01T19:07:28-0500

The integrability condition:

𝑃(𝑄/𝑧𝑅/𝑦)+𝑄(𝑅/𝑥𝑃/𝑧)+𝑅(𝑃/𝑦𝑄/𝑥)=0𝑃 ( ∂𝑄/ ∂𝑧 − ∂𝑅/ ∂𝑦 ) + 𝑄 ( ∂𝑅/ ∂𝑥 − ∂𝑃/ ∂𝑧 ) + 𝑅 ( ∂𝑃/ ∂𝑦 − ∂𝑄/ ∂𝑥 ) = 0


z(zy)(x+2zx)+z(x+z)(2x+y2z+y)+x(x+y)(zz)=z(z-y)(x+2z-x)+z(x+z)(2x+y-2z+y)+x(x+y)(-z-z)=

=2z2(zy)+2z(x+z)(x+yz)2zx(x+y)==2z^2(z-y)+2z(x+z)(x+y-z)-2zx(x+y)=

=2z32z2y+2zx2+2zxy2z2x+2z2x+2z2y2z32zx22xyz=0=2z^3-2z^2y+2zx^2+2zxy-2z^2x+2z^2x+2z^2y-2z^3-2zx^2-2xyz=0

The equation is integrable.


z(zy)dx+z(x+z)dy+x(x+y)dz=0z(z-y)dx+z(x+z)dy+x(x+y)dz=0

This equation is homogeneous.

Px+Qy+Rz=z(zy)x+z(x+z)y+x(x+y)z=Px+Qy+Rz=z(z-y)x+z(x+z)y+x(x+y)z=

=z2x+z2y+x2z+xyz=D0=z^2x+z^2y+x^2z+xyz=D\neq0

Integrating factor:

1D=1z2x+z2y+x2z+xyz\frac{1}{D}=\frac{1}{z^2x+z^2y+x^2z+xyz}


Then:


z(zy)dx+z(x+z)dy+x(x+y)dzz2x+z2y+x2z+xyz=z(zy)dx+z(x+z)dy+x(x+y)dzz(x+y)(x+z)=0\frac{z(z-y)dx+z(x+z)dy+x(x+y)dz}{z^2x+z^2y+x^2z+xyz}=\frac{z(z-y)dx+z(x+z)dy+x(x+y)dz}{z(x+y)(x+z)}=0


(zy)dx(x+y)(x+z)+dyx+y+xdzz(x+z)=0\frac{(z-y)dx}{(x+y)(x+z)}+\frac{dy}{x+y}+\frac{xdz}{z(x+z)}=0


d(ln(x+y)ln(x+z))+dzx+z+xdzz(x+z)=0d(ln(x+y)-ln(x+z))+\frac{dz}{x+z}+\frac{xdz}{z(x+z)}=0


d(ln(x+y)ln(x+z))+(x+z)dzz(x+z)=0d(ln(x+y)-ln(x+z))+\frac{(x+z)dz}{z(x+z)}=0


ln(x+y)ln(x+z)+lnz=lnCln(x+y)-ln(x+z)+lnz=lnC


z(x+y)x+z=C\frac{z(x+y)}{x+z}=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS