(xz+yz)dx/dy + (xz-yz)dz/dy = x2+y2 find the general solution
(xz+yz)p+(xz-yz)q=x2+y2
P=xz+yz
Q=xz-yz
R=x2+y2
dxP=dyQ=dzR\frac{dx}{P}= \frac{dy}{Q}=\frac{dz}{R}Pdx=Qdy=Rdz
dxxz+yz=dyxz−yz=dzx2+y2\frac{dx}{xz+yz}= \frac{dy}{xz-yz}=\frac{dz}{x^2+y^2}xz+yzdx=xz−yzdy=x2+y2dz
Multipliers: -x,y,z
-xdx+ydy+zdz=0
1/2(-x2+y2+z2)=C1
Multipliers: x,-y,-z
xdx-ydy-zdz=0
1/2(x2-y2-z2)=C2
ϕ(c1,c2)=0\phi(c_{1},c_{2})=0ϕ(c1,c2)=0
ϕ(1/2(−x2+y2+z2),1/2(x2−y2−z2))=0\phi( 1/2(-x^2+y^2+z^2),1/2(x^2-y^2-z^2))=0ϕ(1/2(−x2+y2+z2),1/2(x2−y2−z2))=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments