(xz+yz)dx/dy + (xz-yz)dz/dy = x2+y2 find the general solution
(xz+yz)p+(xz-yz)q=x2+y2
P=xz+yz
Q=xz-yz
R=x2+y2
"\\frac{dx}{P}= \\frac{dy}{Q}=\\frac{dz}{R}"
"\\frac{dx}{xz+yz}= \\frac{dy}{xz-yz}=\\frac{dz}{x^2+y^2}"
Multipliers: -x,y,z
-xdx+ydy+zdz=0
1/2(-x2+y2+z2)=C1
Multipliers: x,-y,-z
xdx-ydy-zdz=0
1/2(x2-y2-z2)=C2
"\\phi(c_{1},c_{2})=0"
"\\phi( 1\/2(-x^2+y^2+z^2),1\/2(x^2-y^2-z^2))=0"
Comments
Leave a comment