Rearranging gives:dy
dxdy=xy+x2+y2=xy+1+(xy)2
Try substituting u=y/x.
Then y′=u+xu′, giving:
xu′=1+u2
1+u2u′=x1
sinh-1u=c+ log(x)
u=sinh(c+ log(x))
General solution
y=xsinh(c+log(x))=x2ec+log(x).−e−c−log(x)=x2ecelog(x)−1/ecelog(x)
2=3(3ec−1/3ec)=3ec−1/ec
3e2c−2ec−1=0
D=4+12=16
ec=62−+16
ec1=1
ec2= -1/3
Particular solution
y1=x2elog(x)−1/elog(x)
y2=x2−1/3elog(x)+3/elog(x)
Comments