Question #157817

obtain the general and particular solution for differential equation below

(y - √x2+y2) dx - xdy = 0 when x=√3, y=1


1
Expert's answer
2021-01-26T03:38:47-0500

Rearranging gives:dy

dydx=y+x2+y2x=yx+1+(yx)2\frac{dy}{dx}= \frac{y+ \sqrt{x^2+y^2}}{x}= \frac{y}{x}+ \sqrt{1+ (\frac{y}{x})^2}

Try substituting u=y/x.

Then y′=u+xu′, giving:

xu=1+u2xu'= \sqrt{1+u^2}

u1+u2=1x\frac{u'}{ \sqrt{1+u^2}}= \frac{1}{x}

sinh-1u=c+ log(x)

u=sinh(c+ log(x))

General solution

y=xsinh(c+log(x))=xec+log(x).eclog(x)2=xecelog(x)1/ecelog(x)2y=x sinh(c+ log(x))=x \frac{e^{c+log(x)}. - e^{-c-log(x)}}{2}=x \frac{e^ce^{log(x)}- 1/e^ce^{log(x)}}{2}

2=3(3ec1/3ec)=3ec1/ec2= \sqrt{3}( \sqrt{3}e^c -1/ \sqrt{3}e^c) =3e^c -1/e^c

3e2c2ec1=03e^{2c}-2e^c-1=0

D=4+12=16

ec=2+166e^c= \frac{2^+_- \sqrt{16}}{6}

ec1=1

ec2= -1/3

Particular solution

y1=xelog(x)1/elog(x)2y_1=x \frac{e^{log(x)}-1/e^{log(x)}}{2}

y2=x1/3elog(x)+3/elog(x)2y_2=x \frac{-1/3e^{log(x)}+ 3/e^{log(x)}}{2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS