Answer to Question #157756 in Differential Equations for Jayshree

Question #157756

Solve the following linear differential equations

1) dy/dx + 2y = sinx

2) dy/dx + y = e^x

3) dy/dx +(4/x)y = x³y³




1
Expert's answer
2021-01-26T03:21:08-0500

1) dydx+2y=sin(x)\frac{dy}{dx}+2y=\sin \left(x\right)  - First order linear Ordinary Differential Equation

A first order linear ODE has the form of     y(x)+p(x)y=q(x)y'\left(x\right)+p\left(x\right)y=q\left(x\right)  

Substitute   dydxwithy\frac{dy}{dx}\mathrm{\:with\:}y'\:

y+2y=sin(x)y'\:+2y=\sin \left(x\right)

The equation is in the first order linear ODE form

We find the integration factor:  μ(x)=e2x\mu(x) = e^{2x}

We put the equation in the form (μ(x)y)=μ(x)q(x):(\mu(x)y)' = \mu(x)q(x):     (e2xy)=sin(x)e2x(e^{2x}y)' = sin(x)e^{2x}

Solve (e2xy)=sin(x)e2x:(e^{2x}y)' = sin(x)e^{2x} :            y=cos(x)5+2sin(x)5+c1e2xy=-\frac{\cos \left(x\right)}{5}+\frac{2\sin \left(x\right)}{5}+\frac{c_1}{e^{2x}}

Answer: y=cos(x)5+2sin(x)5+c1e2xy=\large-\frac{\cos \left(x\right)}{5}+\frac{2\sin \left(x\right)}{5}+\frac{c_1}{e^{2x}}


2) dydx+y=ex\frac{dy}{dx}+y=e^x -  First order linear Ordinary Differential Equation

A first order linear ODE has the form of    y(x)+p(x)y=q(x)y'\left(x\right)+p\left(x\right)y=q\left(x\right)

Substitute  dydxwithy\frac{dy}{dx}\mathrm{\:with\:}y'\:

dydx+y=ex\frac{dy}{dx}+y=e^x

The equation is in the first order linear ODE form

We find the integration factor: μ(x)=e2x\mu(x) = e^{2x}

We put the equation in the form (μ(x)y)=μ(x)q(x):(\mu(x)y)' = \mu(x)q(x):   (exy)=e2x(e^xy)'=e^{2x}

Solve (exy)=e2x:(e^xy)'=e^{2x}:   y=ex2+c1exy=\frac{e^x}{2}+\frac{c_1}{e^x}

Answer: y=ex2+c1exy=\large\frac{e^x}{2}+\frac{c_1}{e^x}


3) dydx+(4x)y=x3y3\frac{dy}{dx}+\left(\frac{4}{x}\right)y=x^3y^3 -   First order Bernoulli Ordinary Differential Equation

A first order Bernoulli ODE has the form of    y+p(x)y=q(x)yny'+p\left(x\right)y=q\left(x\right)y^n

Substitute  dydxwithy\frac{dy}{dx}\mathrm{\:with\:}y'\:

y+(4x)y=x3y3y' + \left(\frac{4}{x}\right)y=x^3y^3

The equation is in first order Bernoulli ODE form

The general solution is obtained by substituting ν=y1n\nu = y^{1-n} and solving 11nν+p(x)ν=q(x)\frac{1}{1-n}\nu' + p(x)\nu=q(x)

Transform to  11nν+p(x)ν=q(x)\frac{1}{1-n}\nu' + p(x)\nu=q(x) :    ν2+4νx=x3\large-\frac{\nu'}{2}+\frac{4\nu}{x}=x^3

Solve ν2+4νx=x3\large-\frac{\nu'}{2}+\frac{4\nu}{x}=x^3 :   ν=x42+c1x8\nu = \large\frac{x^4}{2}+c_1x^8

Substitute back ν=y2:\nu = y^{-2}:      y2=x42+c1x8y^{-2} = \large\frac{x^4}{2}+c_1x^8

Isolate y:     y=2x4(1+2c1x4),y=2x4(1+2c1x4)\large y=\sqrt{\frac{2}{x^4\left(1+2c_1x^4\right)}},\:y=-\sqrt{\frac{2}{x^4\left(1+2c_1x^4\right)}}

Answer:  y=2x4(1+2c1x4),y=2x4(1+2c1x4)\large y=\sqrt{\frac{2}{x^4\left(1+2c_1x^4\right)}},\:y=-\sqrt{\frac{2}{x^4\left(1+2c_1x^4\right)}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment