1) d y d x + 2 y = sin ( x ) \frac{dy}{dx}+2y=\sin \left(x\right) d x d y + 2 y = sin ( x ) - First order linear Ordinary Differential Equation
A first order linear ODE has the form of y ′ ( x ) + p ( x ) y = q ( x ) y'\left(x\right)+p\left(x\right)y=q\left(x\right) y ′ ( x ) + p ( x ) y = q ( x )
Substitute d y d x w i t h y ′ \frac{dy}{dx}\mathrm{\:with\:}y'\: d x d y with y ′
y ′ + 2 y = sin ( x ) y'\:+2y=\sin \left(x\right) y ′ + 2 y = sin ( x )
The equation is in the first order linear ODE form
We find the integration factor: μ ( x ) = e 2 x \mu(x) = e^{2x} μ ( x ) = e 2 x
We put the equation in the form ( μ ( x ) y ) ′ = μ ( x ) q ( x ) : (\mu(x)y)' = \mu(x)q(x): ( μ ( x ) y ) ′ = μ ( x ) q ( x ) : ( e 2 x y ) ′ = s i n ( x ) e 2 x (e^{2x}y)' = sin(x)e^{2x} ( e 2 x y ) ′ = s in ( x ) e 2 x
Solve ( e 2 x y ) ′ = s i n ( x ) e 2 x : (e^{2x}y)' = sin(x)e^{2x} : ( e 2 x y ) ′ = s in ( x ) e 2 x : y = − cos ( x ) 5 + 2 sin ( x ) 5 + c 1 e 2 x y=-\frac{\cos \left(x\right)}{5}+\frac{2\sin \left(x\right)}{5}+\frac{c_1}{e^{2x}} y = − 5 c o s ( x ) + 5 2 s i n ( x ) + e 2 x c 1
Answer : y = − cos ( x ) 5 + 2 sin ( x ) 5 + c 1 e 2 x y=\large-\frac{\cos \left(x\right)}{5}+\frac{2\sin \left(x\right)}{5}+\frac{c_1}{e^{2x}} y = − 5 c o s ( x ) + 5 2 s i n ( x ) + e 2 x c 1
2) d y d x + y = e x \frac{dy}{dx}+y=e^x d x d y + y = e x - First order linear Ordinary Differential Equation
A first order linear ODE has the form of y ′ ( x ) + p ( x ) y = q ( x ) y'\left(x\right)+p\left(x\right)y=q\left(x\right) y ′ ( x ) + p ( x ) y = q ( x )
Substitute d y d x w i t h y ′ \frac{dy}{dx}\mathrm{\:with\:}y'\: d x d y with y ′
d y d x + y = e x \frac{dy}{dx}+y=e^x d x d y + y = e x
The equation is in the first order linear ODE form
We find the integration factor: μ ( x ) = e 2 x \mu(x) = e^{2x} μ ( x ) = e 2 x
We put the equation in the form ( μ ( x ) y ) ′ = μ ( x ) q ( x ) : (\mu(x)y)' = \mu(x)q(x): ( μ ( x ) y ) ′ = μ ( x ) q ( x ) : ( e x y ) ′ = e 2 x (e^xy)'=e^{2x} ( e x y ) ′ = e 2 x
Solve ( e x y ) ′ = e 2 x : (e^xy)'=e^{2x}: ( e x y ) ′ = e 2 x : y = e x 2 + c 1 e x y=\frac{e^x}{2}+\frac{c_1}{e^x} y = 2 e x + e x c 1
Answer : y = e x 2 + c 1 e x y=\large\frac{e^x}{2}+\frac{c_1}{e^x} y = 2 e x + e x c 1
3) d y d x + ( 4 x ) y = x 3 y 3 \frac{dy}{dx}+\left(\frac{4}{x}\right)y=x^3y^3 d x d y + ( x 4 ) y = x 3 y 3 - First order Bernoulli Ordinary Differential Equation
A first order Bernoulli ODE has the form of y ′ + p ( x ) y = q ( x ) y n y'+p\left(x\right)y=q\left(x\right)y^n y ′ + p ( x ) y = q ( x ) y n
Substitute d y d x w i t h y ′ \frac{dy}{dx}\mathrm{\:with\:}y'\: d x d y with y ′
y ′ + ( 4 x ) y = x 3 y 3 y' + \left(\frac{4}{x}\right)y=x^3y^3 y ′ + ( x 4 ) y = x 3 y 3
The equation is in first order Bernoulli ODE form
The general solution is obtained by substituting ν = y 1 − n \nu = y^{1-n} ν = y 1 − n and solving 1 1 − n ν ′ + p ( x ) ν = q ( x ) \frac{1}{1-n}\nu' + p(x)\nu=q(x) 1 − n 1 ν ′ + p ( x ) ν = q ( x )
Transform to 1 1 − n ν ′ + p ( x ) ν = q ( x ) \frac{1}{1-n}\nu' + p(x)\nu=q(x) 1 − n 1 ν ′ + p ( x ) ν = q ( x ) : − ν ′ 2 + 4 ν x = x 3 \large-\frac{\nu'}{2}+\frac{4\nu}{x}=x^3 − 2 ν ′ + x 4 ν = x 3
Solve − ν ′ 2 + 4 ν x = x 3 \large-\frac{\nu'}{2}+\frac{4\nu}{x}=x^3 − 2 ν ′ + x 4 ν = x 3 : ν = x 4 2 + c 1 x 8 \nu = \large\frac{x^4}{2}+c_1x^8 ν = 2 x 4 + c 1 x 8
Substitute back ν = y − 2 : \nu = y^{-2}: ν = y − 2 : y − 2 = x 4 2 + c 1 x 8 y^{-2} = \large\frac{x^4}{2}+c_1x^8 y − 2 = 2 x 4 + c 1 x 8
Isolate y: y = 2 x 4 ( 1 + 2 c 1 x 4 ) , y = − 2 x 4 ( 1 + 2 c 1 x 4 ) \large y=\sqrt{\frac{2}{x^4\left(1+2c_1x^4\right)}},\:y=-\sqrt{\frac{2}{x^4\left(1+2c_1x^4\right)}} y = x 4 ( 1 + 2 c 1 x 4 ) 2 , y = − x 4 ( 1 + 2 c 1 x 4 ) 2
Answer: y = 2 x 4 ( 1 + 2 c 1 x 4 ) , y = − 2 x 4 ( 1 + 2 c 1 x 4 ) \large y=\sqrt{\frac{2}{x^4\left(1+2c_1x^4\right)}},\:y=-\sqrt{\frac{2}{x^4\left(1+2c_1x^4\right)}} y = x 4 ( 1 + 2 c 1 x 4 ) 2 , y = − x 4 ( 1 + 2 c 1 x 4 ) 2
Comments