We introduce an additional variable z such that y=xz. Then
y′=z+xz′
y′′=2z′+xz′′
(1−x2)y′′+2xy′−2y=(1−x2)(2z′+xz′′)+2x(z+xz′)−2xz=x(1−x2)z′′+2z′=0 z′z′′=x(x2−1)2=x−11+x+11−x2=dxdln∣x2x2−1∣=dxdln∣z′∣
from where we have
∣z′∣=c∣1−x−2∣
if z' is differentiable everywhere besides 0, then z′=c(1−x−2)
z=c(x+x−1)+c′
y=xz=c(x2+1)+c′x
Comments