dxdy+yx=y2e(2x2)sin(x)
First order Bernoulli Ordinary Differential Equation
A first order Bernoulli ODE has the form of y′+p(x)y=q(x)yn
Substitute dxdywithy′
y′+yx=y2e(2x2)sin(x)
Rewrite in the form of a first order Bernoulli ODE: y′+p(x)y=q(x)yn
p(x)=x,q(x)=e2x2sin(x),n=2
The general solution is obtained by substituting v=y1−n
and solving 1−n1v′+p(x)v=q(x)
Transform to 1−n1v′+p(x)v=q(x): −v′+xv=e(2x2)sin(x)
Solve −v′+xv=e(2x2)sin(x) : v=e2x2cos(x)+c1e2x2
Substitute back v=y−1: y−1=e2x2cos(x)+c1e2x2
Isolate y : y=e2x2(cos(x)+c1)1
The answer: y=e2x2(cos(x)+c1)1
Comments