Question #156449

Solve dy/dx + yx = y2e^(x^2/2)sinx


1
Expert's answer
2021-01-19T18:23:00-0500

dydx+yx=y2e(x22)sin(x)\frac{dy}{dx}+yx=y^2e^{\left(\frac{x^2}{2}\right)}\sin \left(x\right)


First order Bernoulli Ordinary Differential Equation

A first order Bernoulli ODE has the form of y+p(x)y=q(x)yny'+p\left(x\right)y=q\left(x\right)y^n

Substitute dydxwithy\frac{dy}{dx}\mathrm{\:with\:}y'\:

y+yx=y2e(x22)sin(x)y'\:+yx=y^2e^{\left(\frac{x^2}{2}\right)}\sin \left(x\right)

Rewrite in the form of a first order Bernoulli ODE:  y+p(x)y=q(x)yny'+p\left(x\right)y=q\left(x\right)y^n

p(x)=x,q(x)=ex22sin(x),n=2p\left(x\right)=x,\:\quad q\left(x\right)=e^{\frac{x^2}{2}}\sin \left(x\right),\:\quad n=2

The general solution is obtained by substituting v=y1nv=y^{1-n}

and solving 11nv+p(x)v=q(x)\frac{1}{1-n}v'+p\left(x\right)v=q\left(x\right)

Transform to  11nv+p(x)v=q(x):\frac{1}{1-n}v'+p\left(x\right)v=q\left(x\right):         v+xv=e(x22)sin(x)-v'+xv = e^{\left(\frac{x^2}{2}\right)}\sin \left(x\right)

Solve v+xv=e(x22)sin(x)-v'+xv = e^{\left(\frac{x^2}{2}\right)}\sin \left(x\right) :                  v=ex22cos(x)+c1ex22v = e^{\large\frac{x^2}{2}}cos(x) + c_1 e^{\large\frac{x^2}{2}}

Substitute back v=y1:v = y {-1}:       y1=ex22cos(x)+c1ex22y^{-1} = e^{\large\frac{x^2}{2}}cos(x) + c_1 e^{\large\frac{x^2}{2}}

Isolate y :          y=1ex22(cos(x)+c1)y = \large\frac{1}{e^{\frac{x^2}{2}}\left(\cos \left(x\right)+c_1\right)}


The answer:     y=1ex22(cos(x)+c1)y = \large\frac{1}{e^{\frac{x^2}{2}}\left(\cos \left(x\right)+c_1\right)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS