Question #156087

Solve the differential equation by jacobi's method (p2+q2)y=qz


1
Expert's answer
2021-01-19T17:21:08-0500

(p2+q2)y=qzyp2+yq2=qz(p^2+q^2)y=qz\\ yp^2+yq^2=qz\\

Let p=uxuz,q=uyuzp=-\frac{u_x}{u_z},q=-\frac{u_y}{u_z} .

y(ux2uz2)+y(uy2uz2)=uyuz.zyux2+yuy2=zuyuz    f(x,y,z,ux,uy,uz)=yux2+yuy2+zuyuz=0y(\frac{u_x^2}{u_z^2})+y(\frac{u_y^2}{u_z^2})=-\frac{u_y}{u_z}.z\\ yu_x^2+yu_y^2=-zu_yu_z\\ \implies f(x,y,z,u_x,u_y,u_z)=yu_x^2+yu_y^2+zu_yu_z=0

fux=2yux,fuy=2yuy+zuz,fuz=zuy,fx=0,fy=ux2+uy2,fz=uyuzf_{u_x}=2yu_x,f_{u_y}=2yu_y+zu_z,f_{u_z}=zu_y,f_x=0,f_y=u_x^2+u_y^2,f_z=u_yu_z .

The auxilliary equation is given as;

dxfux=dyfuy=dzfuz=duxfx=duyfy=duzfzdx2yux=dy2yuy+zuz=dzzuy=dux0=duy(ux2+uy2)=duzuyuz\frac{dx}{f_{u_x}}=\frac{dy}{f_{u_y}}=\frac{dz}{f_{u_z}}=\frac{du_x}{-f_x}=\frac{du_y}{-f_y}=\frac{du_z}{-f_z}\\ \frac{dx}{2yu_x}=\frac{dy}{2yu_y+zu_z}=\frac{dz}{zu_y}=\frac{du_x}{0}=\frac{du_y}{-(u_x^2+u_y^2)}=\frac{du_z}{-u_yu_z}

From the fraction above, we see that

dux=0    ux=adu_x=0 \implies u_x=a \\

Also,

dzzuy=duzuyuzdzz+duzuz=0Integratelnz+lnuz=lnbuz=bz\frac{dz}{zu_y}=\frac{du_z}{-u_yu_z}\\ \frac{dz}{z}+\frac{du_z}{u_z}=0\\ \text{Integrate}\\ \ln z +\ln u_z=\ln b\\ u_z=\frac{b}{z}

Substitute the values for uxu_x and uzu_z into ff

a2y+yuy2+buy=0yuy2+buy+a2y=0uy=b±b24a2y22ya^2y+yu_y^2+bu_y=0\\ yu_y^2+bu_y+a^2y=0\\ u_y=\frac{-b \pm \sqrt{b^2-4a^2y^2}}{2y}

Take the positive value\\

uy=b+b24a2y22yu_y=\frac{-b+ \sqrt{b^2-4a^2y^2}}{2y}

du=uxdx+uydy+uzdzdu=adx+b+b24a2y22ydy+bzdzintegrateu=ax+12(b24a2y2btanh1(b24a2y2b))+blnz+cdu=u_xdx+u_ydy+u_zdz\\ du=adx+\frac{-b+ \sqrt{b^2-4a^2y^2}}{2y}dy+\frac{b}{z}dz\\ \text{integrate}\\ u=ax+\frac{1}{2}\left(\sqrt{b^2-4a^2y^2}-b\tanh^{-1}\left(\frac{\sqrt{b^2-4a^2y^2}}{b}\right)\right)+b \ln z+c

Let u=c

ax+12(b24a2y2btanh1(b24a2y2b))+blnz=0ax+\frac{1}{2}\left(\sqrt{b^2-4a^2y^2}-b\tanh^{-1}\left(\frac{\sqrt{b^2-4a^2y^2}}{b}\right)\right)+b\ln z=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS