(p2+q2)y=qzyp2+yq2=qz
Let p=−uzux,q=−uzuy .
y(uz2ux2)+y(uz2uy2)=−uzuy.zyux2+yuy2=−zuyuz⟹f(x,y,z,ux,uy,uz)=yux2+yuy2+zuyuz=0
fux=2yux,fuy=2yuy+zuz,fuz=zuy,fx=0,fy=ux2+uy2,fz=uyuz .
The auxilliary equation is given as;
fuxdx=fuydy=fuzdz=−fxdux=−fyduy=−fzduz2yuxdx=2yuy+zuzdy=zuydz=0dux=−(ux2+uy2)duy=−uyuzduz
From the fraction above, we see that
dux=0⟹ux=a \\
Also,
zuydz=−uyuzduzzdz+uzduz=0Integratelnz+lnuz=lnbuz=zb
Substitute the values for ux and uz into f
a2y+yuy2+buy=0yuy2+buy+a2y=0uy=2y−b±b2−4a2y2
Take the positive value\\
uy=2y−b+b2−4a2y2
du=uxdx+uydy+uzdzdu=adx+2y−b+b2−4a2y2dy+zbdzintegrateu=ax+21(b2−4a2y2−btanh−1(bb2−4a2y2))+blnz+c
Let u=c
ax+21(b2−4a2y2−btanh−1(bb2−4a2y2))+blnz=0
Comments