Answer to Question #156400 in Differential Equations for mohsal

Question #156400

d^2y/dx^2+9y=3+sin (3x)


1
Expert's answer
2021-01-19T18:20:34-0500

Solution: This is second order linear nonhomogeneous differential equation with constant coefficient which is in the form ay+by+cy=g(x)Solution:~This ~is~ second~ order~ linear~ non-homogeneous ~differential ~\\ equation~ with ~ constant ~ coefficient ~which ~is ~in ~the ~form~ay''+by'+cy=g(x)

Substituted2ydx2=y the given differential equation is written as y+9y=3+sin(3x)\therefore Substitute \frac{d^2y}{dx^2 }=y'' \\ \therefore ~the ~given ~differential ~equation~ is ~written ~as~y''+9y=3+sin(3x)


General Solution to a(x)y+b(x)y+c(x)y=g(x) can be written as y=yh+yp............................................................................................(1)Where yh is the solution to the homogenous ODE a(x)y+b(x)y+c(x)y=0and yp particular solution,is any function that satisfies the nonhomogenous equationGeneral ~ Solution~ to ~a(x)y''+ b(x)y'+ c(x)y=g(x)~can ~be ~written ~ as~ \\y=y_h +y_p ............................................................................................(1) \\Where~ y_h ~is~ the ~solution~ to~ the~ homogenous ~ODE ~a(x)y''+ b(x)y'+ c(x)y=0 \\and~y_p~particular ~solution, is ~any~ function~ that ~satisfies~the ~\\non-homogenous~equation


Now,we find,yh and yp.Now, we ~find, y_h~ and~ y_p .


To find yh:We know that ,the general solution of y+k2y=0 is y=c1 cos(kx)+c2 sin(kx)The general solution of y+9y=0 y+32y=0 is  y=c1 cos(3x)+c2 sin(3x)yh=c1 cos(3x)+c2 sin(3x).............................................................(2)To ~find~ y_h: We~know ~that~, the~ general~ solution~ of~ y''+k^2y=0~is~ \\y=c_1~cos(kx)+c_2~sin(kx) \\\therefore The ~general ~ solution ~ of~ y''+9y=0~\Rightarrow y''+3^2y=0~is~ ~ \\y=c_1~cos(3x)+c_2~sin(3x) \\\therefore y_h=c_1~cos(3x)+c_2~sin(3x).............................................................(2)


To find yp: Find yp that satisfies y+9y=3+sin(3x)y=13x cos(3x)6yp=13x cos(3x)6........................................................................(3)To ~ find~y_p:~Find ~y_p~that~satisfies~y''+9y=3+sin(3x)\\\Rightarrow y=\frac{1}{3}-\frac{x~cos(3x)}{6} \\ \therefore y_p=\frac{1}{3}-\frac{x~cos(3x)}{6}........................................................................(3)


The general solution y=yh+yp is y=c1 cos(3x)+c2 sin(3x)+13x cos(3x)6\therefore The~ general ~ solution~ y=y_h+y_p~ is~ \\y=c_1~cos(3x)+c_2~sin(3x)+\frac{1}{3}-\frac{x~cos(3x)}{6}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment