To solve linear equation :
2dxdy−2y=x5sin2x−x3+4x4
Lets divide both sides of equation by 2 and multiply both sides by f(x)=e∫−1dx′=e−x
e−xdxdy−e−xy=2e−x(x5sin2x−x3+4x4)
Lets substitute −e−x=dxd(e−x)
e−xdxdy(x)+dxd(e−x)y(x)=21e−x(x5sin2x−x3+4x4)
Apply the reverse product rule fdxdg+gdxdf=dxd(fg) to left-hand side:
dxd(e−xy(x))=21e−x(x5sin2x−x3+4x4)
Integrate both sides with respect to x:
∫dxd(e−xy(x))dx=∫21e−x(x5sin2x−x3+4x4)dx
Evaluate the integrals:
e−xy(x)=62501e−x(−3125(4x4+15x3+45x2+90x+90)−2cos(2x)(625x5+1250x4−500x3−3600x2−2280x+528)+(−625x5+1875x4+5500x3+2100x2−4920x−2808)sin(2x))+c1
by dividing both sides by e−x
y(x)=6250exe−x(−3125(4x4+15x3+45x2+90x+90)−2cos(2x)(625x5+1250x4−500x3−3600x2−2280x+528)+(−625x5+1875x4+5500x3+2100x2−4920x−2808)sin(2x))+c1
Comments