Question #155937

2dy/dx-2y=x5sin2x-x3+4x4

1
Expert's answer
2021-01-19T01:48:23-0500

To solve linear equation :

2dydx2y=x5sin2xx3+4x42\frac{dy}{dx}-2y=x^5\sin{2x}-x^3+4x^4

Lets divide both sides of equation by 2 and multiply both sides by f(x)=e1dx=exf(x)=e^{\int-1dx'}=e^{-x}

exdydxexy=ex2(x5sin2xx3+4x4)e^{-x}\frac{dy}{dx}-e^{-x}y=\frac{e^{-x}}{2}(x^5\sin{2x}-x^3+4x^4)

Lets substitute ex=ddx(ex)-e^{-x}=\frac{d}{dx}(e^{-x})

exdy(x)dx+ddx(ex)y(x)=12ex(x5sin2xx3+4x4)e^{-x}\frac{dy(x)}{dx}+\frac{d}{dx}(e^{-x})y(x)=\frac{1}{2}e^{-x}(x^5\sin{2x}-x^3+4x^4)

Apply the reverse product rule fdgdx+gdfdx=ddx(fg)f\frac{dg}{dx}+g\frac{df}{dx}=\frac{d}{dx}(fg) to left-hand side:

ddx(exy(x))=12ex(x5sin2xx3+4x4)\frac{d}{dx}(e^{-x}y(x))= \frac{1}{2}e^{-x}(x^5\sin{2x}-x^3+4x^4)

Integrate both sides with respect to x:

ddx(exy(x))dx=12ex(x5sin2xx3+4x4)dx\int\frac{d}{dx}(e^{-x}y(x))dx= \int\frac{1}{2}e^{-x}(x^5\sin{2x}-x^3+4x^4)dx

Evaluate the integrals:

exy(x)=16250ex(3125(4x4+15x3+45x2+90x+90)2cos(2x)(625x5+1250x4500x33600x22280x+528)+(625x5+1875x4+5500x3+2100x24920x2808)sin(2x))+c1e^{-x}y(x)= \frac{1}{6250}e^{-x}(-3125(4x^4+15x^3+45x^2+90x+90)-2\cos(2x)(625x^5+1250x^4-500x^3-3600x^2-2280x+528)+(-625x^5+1875x^4+5500x^3+2100x^2-4920x-2808)\sin(2x))+c_1

by dividing both sides by exe^{-x}

y(x)=ex6250ex(3125(4x4+15x3+45x2+90x+90)2cos(2x)(625x5+1250x4500x33600x22280x+528)+(625x5+1875x4+5500x3+2100x24920x2808)sin(2x))+c1y(x)= \frac{e^x}{6250}e^{-x}(-3125(4x^4+15x^3+45x^2+90x+90)-2\cos(2x)(625x^5+1250x^4-500x^3-3600x^2-2280x+528)+(-625x^5+1875x^4+5500x^3+2100x^2-4920x-2808)\sin(2x))+c_1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS