y''+y'-2y=e^x+4sinx+x^2-x operator method differential equations
y'=Dy
y"=D2y
(D2+D-2)y=ex+4sin(x)+x2-x
Common solution
D2+D-2=0
"D1=(-1+ \\sqrt{1+8})\/2=1"
"D2=(-1- \\sqrt{1+8})\/2=-2"
y(x)=c1ex+c2e-2x
Particular solution for ex
Dekx=kekx
D2ekx=k2ekx
k=1
Dex=ex
D2ex=ex
y(x)=ex+ex-2=2ex-2
Particular solution for sin(x)
Dsin(kx)=kcos(kx)
D2sin(kx)=-k2sin(kx)
k=1
D4sin(x)=4cos(x)
D24sin(x)=-16sin(x)
y(x)=-16sin(x)+4cos(x)-2
Particular solution for x2
Dxk=kxk-1
D2xk=k(k-1)xk-2
k=2
Dx2=2x
D2x2=2(2-1)x2-2=2
y(x)=2+2x-2=2x
Particular solution for x
k=1
Dx=1
D2x=0
y(x)=1-2=-1
Answer: y(x)=c1ex+c2e-2x +2ex-2-16sin(x)+4cos(x)-2+2x-1=c1ex+c2e-2x+2ex-16sin(x)+4cos(x)+2x-5
Comments
Leave a comment