Charpit’s method,xpq + yq
2 = 1
let S(x, y, z, p, q) = xpq + yq2 - 1.
Then Sx = pq, Sy = q2, Sz = 0.
dpSx+pSz=dqSy+qSz\frac{dp}{S_x+pS_z} = \frac{dq}{S_y+qS_z}Sx+pSzdp=Sy+qSzdq
dppq−dqq2=0\frac{dp}{pq} - \frac{dq}{q^2} = 0pqdp−q2dq=0
qdp−pdqpq2=1pd(pq)=0\frac{qdp - pdq}{pq^2} = \frac{1}{p}d(\frac{p}{q}) = 0pq2qdp−pdq=p1d(qp)=0
p/q = const = a
p = aq.
Putting this into the equation S=0, we have:
q2(ax+y) = 1
q=±1ax+yq= \frac{\pm 1}{\sqrt{ax+y}}q=ax+y±1
p=aq=±aax+yp = aq = \frac{\pm a}{\sqrt{ax+y}}p=aq=ax+y±a
Putting these two formulas in the equation dz = pdx + qdy, we have:
dz=±adx+dyax+y=±d(2ax+y)dz = \pm\frac{adx + dy}{\sqrt{ax+y}} = \pm d(2\sqrt{ax+y})dz=±ax+yadx+dy=±d(2ax+y)
Integrating this equation, we finally get:
z=±2ax+y+bz = \pm 2\sqrt{ax+y} + bz=±2ax+y+b
Answer. z=±2ax+y+bz = \pm 2\sqrt{ax+y} + bz=±2ax+y+b
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments