(y−z)p+(z−x)q=x−yy−zdx=z−xdy=x−ydxdx+dy+dz=0∫dx+∫dy+∫dz=0x+y+z=c1c1−2x−ydy=x−ydx(x−y)dy+(2x+y−c1)dx=0xdy+ydx−ydy+2xdx−c1dx=0d(xy)−ydy+2xdx−c1dx=0∫d(xy)−∫ydy+∫2xdx−∫c1dx=∫0xy−2y2+x2−c1x=c22x2−y2+2xy−2c1=2c2z=0,y=2xx=t,y=2t,z=0t+2t+0=c1,c1=3t2t2−4t2+4t2−2(3t)=2c22t2−6t=2c2t2−3t=c2c2=t2−c12x2−y2+2xy−2c1=2(t2−c1)2x2−y2+2xy=2t22x2−y2+2xy=xy2x2−y2+xy=0
Comments