Find particular integrals of the following partial differential equation to represent
surfaces passing through the following curve:
(π¦ β π§)π + (π§ β π₯)π = π₯ β π¦ ; π§ = 0, π¦ = 2π₯
"\\displaystyle\n(y - z)p + (z - x)q = x - y\\\\\n\\frac{\\mathrm{d}x}{y - z} = \\frac{\\mathrm{d}y}{z - x} = \\frac{\\mathrm{d}x}{x - y}\\\\\n\n\n\\mathrm{d}x + \\mathrm{d}y + \\mathrm{d}z = 0\\\\\n\n\n\\int\\mathrm{d}x + \\int\\mathrm{d}y + \\int\\mathrm{d}z = 0\\\\\n\n\nx + y + z = c_1\\\\\n\n\n\n\\frac{\\mathrm{d}y}{c_1 -2x - y} = \\frac{\\mathrm{d}x}{x - y}\\\\\n\n\n(x - y)\\mathrm{d}y + (2x + y - c_1)\\mathrm{d}x = 0\\\\\n\n\nx\\mathrm{d}y + y\\mathrm{d}x - y\\mathrm{d}y + 2x\\mathrm{d}x - c_1\\mathrm{d}x = 0\\\\\n\n\n\\mathrm{d}(xy) - y\\mathrm{d}y + 2x\\mathrm{d}x - c_1\\mathrm{d}x = 0\\\\\n\n\n\\int\\mathrm{d}(xy) - \\int y\\mathrm{d}y + \\int 2x\\mathrm{d}x - \\int c_1 \\mathrm{d}x= \\int 0\\\\\n\n\nxy - \\frac{y^2}{2} + x^2 - c_1x = c_2\\\\\n\n\n2x^2 - y^2 + 2xy - 2c_1= 2c_2\\\\\n\nz = 0, y = 2x\\\\\n\nx = t, y = 2t, z = 0\\\\\n\nt + 2t + 0 = c_1, c_1 = 3t\\\\\n\n\n2t^2 - 4t^2 + 4t^2 - 2(3t) = 2c_2\\\\\n\n2t^2 - 6t = 2c_2 \\\\\n\nt^2 - 3t = c_2\\\\\n\n\nc_2 = t^2 - c_1\\\\\n\n\n2x^2 - y^2 + 2xy - 2c_1= 2(t^2 - c_1)\\\\\n\n2x^2 - y^2 + 2xy = 2t^2\\\\\n\n\n2x^2 - y^2 + 2xy = xy\\\\\n\n2x^2 - y^2 + xy = 0\\\\"
Comments
Leave a comment