Question #155542

Find particular integrals of the following partial differential equation to represent

surfaces passing through the following curve:

(𝑦 – 𝑧)𝑝 + (𝑧 – 𝑥)𝑞 = 𝑥 – 𝑦 ; 𝑧 = 0, 𝑦 = 2𝑥


1
Expert's answer
2021-01-14T20:00:21-0500

(yz)p+(zx)q=xydxyz=dyzx=dxxydx+dy+dz=0dx+dy+dz=0x+y+z=c1dyc12xy=dxxy(xy)dy+(2x+yc1)dx=0xdy+ydxydy+2xdxc1dx=0d(xy)ydy+2xdxc1dx=0d(xy)ydy+2xdxc1dx=0xyy22+x2c1x=c22x2y2+2xy2c1=2c2z=0,y=2xx=t,y=2t,z=0t+2t+0=c1,c1=3t2t24t2+4t22(3t)=2c22t26t=2c2t23t=c2c2=t2c12x2y2+2xy2c1=2(t2c1)2x2y2+2xy=2t22x2y2+2xy=xy2x2y2+xy=0\displaystyle (y - z)p + (z - x)q = x - y\\ \frac{\mathrm{d}x}{y - z} = \frac{\mathrm{d}y}{z - x} = \frac{\mathrm{d}x}{x - y}\\ \mathrm{d}x + \mathrm{d}y + \mathrm{d}z = 0\\ \int\mathrm{d}x + \int\mathrm{d}y + \int\mathrm{d}z = 0\\ x + y + z = c_1\\ \frac{\mathrm{d}y}{c_1 -2x - y} = \frac{\mathrm{d}x}{x - y}\\ (x - y)\mathrm{d}y + (2x + y - c_1)\mathrm{d}x = 0\\ x\mathrm{d}y + y\mathrm{d}x - y\mathrm{d}y + 2x\mathrm{d}x - c_1\mathrm{d}x = 0\\ \mathrm{d}(xy) - y\mathrm{d}y + 2x\mathrm{d}x - c_1\mathrm{d}x = 0\\ \int\mathrm{d}(xy) - \int y\mathrm{d}y + \int 2x\mathrm{d}x - \int c_1 \mathrm{d}x= \int 0\\ xy - \frac{y^2}{2} + x^2 - c_1x = c_2\\ 2x^2 - y^2 + 2xy - 2c_1= 2c_2\\ z = 0, y = 2x\\ x = t, y = 2t, z = 0\\ t + 2t + 0 = c_1, c_1 = 3t\\ 2t^2 - 4t^2 + 4t^2 - 2(3t) = 2c_2\\ 2t^2 - 6t = 2c_2 \\ t^2 - 3t = c_2\\ c_2 = t^2 - c_1\\ 2x^2 - y^2 + 2xy - 2c_1= 2(t^2 - c_1)\\ 2x^2 - y^2 + 2xy = 2t^2\\ 2x^2 - y^2 + 2xy = xy\\ 2x^2 - y^2 + xy = 0\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS