(p+q)(z−px−qy)=1f=(p+q)(z−px−qy)−1=0
Charpit's auxillairy equation is given as;
−∂p∂fdx=−∂q∂fdy=−p∂p∂f−q∂p∂fdz=∂x∂f+p∂z∂fdp=∂y∂f+q∂z∂fdq∂x∂f=−p2−pq∂y∂f=−pq−q2∂z∂f=p+q∂p∂f=z−xq−yq−2xp∂q∂f=z−xp−yp−2yq
Now, the Charpit's equation is;
0dp=0dq=2x(p2+pq)+2y(q2+pq)−2zpdz=2q+xp+yp−zdy=2xp+yq+xq−zdxThe first fraction implies, dp=0⟹p=a By integrating Similarly, the second fraction implies dq=0⟹q=b By integrating Now substitute into dz=pdx+qdydz=adx+bdyIntegrate through z=ax+by+cSubstitute the value of z,p and q into f to get c(a+b)(ax+by+c−ax−by)=1c=a+b1⟹z=ax+by+a+b1⟹(a+b)(z−ax−by)=1
Comments