Question #155444
Eliminate the arbitrary function and hence obtain the partial differential equation:

φ (
z
x
3
,
y
x
) = 0
1
Expert's answer
2021-01-14T17:32:34-0500

ϕ=(zx3,yx)=0\phi=(zx^3,yx)=0

zx3=c1zx^3=c_1

yx=c2yx=c_2


dz=3c1dxx4,dx=c2dyy2    dz=3c1c2dyx4y2dz=-\frac{3c_1dx}{x^4}, dx=-\frac{c_2dy}{y^2}\implies dz=\frac{3c_1c_2dy}{x^4y^2}


dz=3c1dxx4=3c1c2dyx4y2dz=-\frac{3c_1dx}{x^4}=\frac{3c_1c_2dy}{x^4y^2}


dz3c1c2=dxc2x4=dyx4y2\frac{dz}{3c_1c_2}=-\frac{dx}{c_2x^4}=\frac{dy}{x^4y^2}


x4y2qc2x4p=3c1c2x^4y^2q-c_2x^4p=3c_1c_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS