Eliminate the arbitrary function and hence obtain the partial differential equation: φ ( z x 3 , y x ) = 0
ϕ=(zx3,yx)=0\phi=(zx^3,yx)=0ϕ=(zx3,yx)=0
zx3=c1zx^3=c_1zx3=c1
yx=c2yx=c_2yx=c2
dz=−3c1dxx4,dx=−c2dyy2 ⟹ dz=3c1c2dyx4y2dz=-\frac{3c_1dx}{x^4}, dx=-\frac{c_2dy}{y^2}\implies dz=\frac{3c_1c_2dy}{x^4y^2}dz=−x43c1dx,dx=−y2c2dy⟹dz=x4y23c1c2dy
dz=−3c1dxx4=3c1c2dyx4y2dz=-\frac{3c_1dx}{x^4}=\frac{3c_1c_2dy}{x^4y^2}dz=−x43c1dx=x4y23c1c2dy
dz3c1c2=−dxc2x4=dyx4y2\frac{dz}{3c_1c_2}=-\frac{dx}{c_2x^4}=\frac{dy}{x^4y^2}3c1c2dz=−c2x4dx=x4y2dy
x4y2q−c2x4p=3c1c2x^4y^2q-c_2x^4p=3c_1c_2x4y2q−c2x4p=3c1c2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments