Eliminate the arbitrary function and hence obtain the partial differential equation:
φ (
z
x
3
,
y
x
) = 0
"\\phi=(zx^3,yx)=0"
"zx^3=c_1"
"yx=c_2"
"dz=-\\frac{3c_1dx}{x^4}, dx=-\\frac{c_2dy}{y^2}\\implies dz=\\frac{3c_1c_2dy}{x^4y^2}"
"dz=-\\frac{3c_1dx}{x^4}=\\frac{3c_1c_2dy}{x^4y^2}"
"\\frac{dz}{3c_1c_2}=-\\frac{dx}{c_2x^4}=\\frac{dy}{x^4y^2}"
"x^4y^2q-c_2x^4p=3c_1c_2"
Comments
Leave a comment