Two PDEs f,g are compatible if they have a common solution. We must show that,
[f,g]=∂(x,p)∂(f,g)+p∂(z,p)∂(f,g)+∂(y,q)∂(f,g)+q∂(z,q)∂(f,g)=0
z=px+qy..................................................(1)Let f=z−px−qy=02xy(p2+q2)=z(yp+xq)............................(2)Let g=2xy(p2+q2)−z(yp+xq)=0.
We shall compute the expression for ∂x∂f,∂y∂f,∂z∂f,∂p∂f,∂q∂f . The same thing for g.
∂x∂f=−p,∂y∂f=−q,∂z∂f=1,∂p∂f=−x,∂q∂f=−y∂x∂g=2y(p2+q2)−zq,∂y∂g=2x(p2+q2)−zp,∂z∂g=−(yp+xq),∂p∂g=4xyp−yz,∂q∂g=4xyq−xz.
∂(x,p)∂(f,g)=∣∣∂x∂f∂p∂f∂x∂g∂p∂g∣∣=∣∣−p−x2y(p2+q2)4xyp−yz∣∣=2xyq2+yzp−2xyp2
∂(z,p)∂(f,g)=∣∣∂z∂f∂p∂f∂z∂g∂p∂g∣∣=∣∣1−x−(yp+xq)4xyp−yz∣∣=3xyp−yz−x2q
∂(y,q)∂(f,g)=∣∣∂y∂f∂q∂f∂y∂g∂q∂g∣∣=∣∣−q−y2x(p2+q2)4xyq−xz∣∣=2xyp2+xzq−2xyq2
∂(z,q)∂(f,g)=∣∣∂z∂f∂q∂f∂z∂g∂q∂g∣∣=∣∣1−y−(yp+xq)4xyq−xz∣∣=3xyq−xz−y2p
[f,g]=2xyq^2+yzp-2xyp^2+3xyp^2-yzp-x^2pq+2xyp^2+xzq-2xyq^2+3xyq^2-xzq-y^2pq\\
[f,g]=3xyp^2+3xyp^2-x^2pq-y^2pq\\
[f,g]=4xyp^2+4xyq^2-xyp^2-x^2pq-xyq^2-y^2pq\\
[f,g]=4(xy(p^2+q^2))-xp(yp+xq)-yq(xq+yp)\\
[f,g]=2z(xp+yq)-(xp+yq)(yp+xq) \text{ From (2)}\\
[f,g]=2z(xp+yq)-z(yp+xq) \text{ From (1)}\\
[f,g]=z(yp+xq)\neq0
Hence, f,g are not compatible.
Comments