Question #154967

Solved by lagrange method

y^2 p^2+x^2q^2=x^2y^2z^2


1
Expert's answer
2021-01-13T19:00:05-0500

F(x,y,z,p,q)=y2p2+x2q2x2y2z2=0F(x,y,z,p,q)=y^2p^2+x^2q^2-x^2y^2z^2=0

dxFp=dyFq=dzpFp+qFq=dpFx+pFz=dqFy+qFz\frac{dx}{F_p}=\frac{dy}{F_q}=\frac{dz}{pF_p+qF_q}=-\frac{dp}{F_x+pF_z}=-\frac{dq}{F_y+qF_z}


dx2py2=dy2qx2=dz2p2y2+2q2x2=dp2xq22xy2z22pzx2y2=dq2yp22yx2z22qzx2y2\frac{dx}{2py^2}=\frac{dy}{2qx^2}=\frac{dz}{2p^2y^2+2q^2x^2}=-\frac{dp}{2xq^2-2xy^2z^2-2pzx^2y^2}=-\frac{dq}{2yp^2-2yx^2z^2-2qzx^2y^2}


pdx+qdydz2p2y2+2q2x22p2y22q2x2=pdx+qdydz0=dp2xq22xy2z22pzx2y2=dq2yp22yx2z22qzx2y2\frac{pdx+qdy-dz}{2p^2y^2+2q^2x^2-2p^2y^2-2q^2x^2}=\frac{pdx+qdy-dz}{0}=-\frac{dp}{2xq^2-2xy^2z^2-2pzx^2y^2}=-\frac{dq}{2yp^2-2yx^2z^2-2qzx^2y^2}


dx2py2=dy2qx2=pdx+qdydz0\frac{dx}{2py^2}=\frac{dy}{2qx^2}=\frac{pdx+qdy-dz}{0}

p=0,q0p=0, q\neq0

Substitute this result into the initial equation, and we get:

Then:

x2q2=x2y2z2x^2q^2=x^2y^2z^2

q=yzq=yz

y22=lnz+c1\frac{y^2}{2}=lnz+c_1


p0,q=0p\neq0, q=0

Then:

p=xzp=xz

x22=lnz+c2\frac{x^2}{2}=lnz+c_2


The general solution:

F(c1,c2)=F(y22lnz,x22lnz)F(c_1,c_2)=F(\frac{y^2}{2}-lnz, \frac{x^2}{2}-lnz)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
14.01.21, 20:08

Dear ANIK KUMAR GHOSH, thank you for leaving a feedback. We would be grateful if you describe these lines in more detail and give more comments.

ANIK KUMAR GHOSH
14.01.21, 17:36

This solution cant match my ans,, here some of line i can't understand.

LATEST TUTORIALS
APPROVED BY CLIENTS