F(x,y,z,p,q)=y2p2+x2q2−x2y2z2=0
Fpdx=Fqdy=pFp+qFqdz=−Fx+pFzdp=−Fy+qFzdq
2py2dx=2qx2dy=2p2y2+2q2x2dz=−2xq2−2xy2z2−2pzx2y2dp=−2yp2−2yx2z2−2qzx2y2dq
2p2y2+2q2x2−2p2y2−2q2x2pdx+qdy−dz=0pdx+qdy−dz=−2xq2−2xy2z2−2pzx2y2dp=−2yp2−2yx2z2−2qzx2y2dq
2py2dx=2qx2dy=0pdx+qdy−dz
p=0,q=0
Substitute this result into the initial equation, and we get:
Then:
x2q2=x2y2z2
q=yz
2y2=lnz+c1
p=0,q=0
Then:
p=xz
2x2=lnz+c2
The general solution:
F(c1,c2)=F(2y2−lnz,2x2−lnz)
Comments
Dear ANIK KUMAR GHOSH, thank you for leaving a feedback. We would be grateful if you describe these lines in more detail and give more comments.
This solution cant match my ans,, here some of line i can't understand.