Let's solve this problem
y ′ ′ − y ′ + 2 y = 2 e x : y''\:-y'\:+2y=2e^x: y ′′ − y ′ + 2 y = 2 e x :
Second-order linear non-homogeneous differential equation with constant coefficients
A second order linear, non-homogeneous ODE has formed of a y ′ ′ + b y ′ + c y = g ( x ) ay''+by'+cy=g\left(x\right) a y ′′ + b y ′ + cy = g ( x )
The General solution to a ( x ) y ′ ′ + b ( x ) y ′ + c ( x ) y = g ( x ) a\left(x\right)y''+b\left(x\right)y'+c\left(x\right)y=g\left(x\right) a ( x ) y ′′ + b ( x ) y ′ + c ( x ) y = g ( x ) can be written as
y = y h + y p y=y_h+y_p y = y h + y p
y h y_h y h is the solution to the homogeneous ODE a ( x ) y ′ ′ + b ( x ) y ′ + c ( x ) y = 0 a\left(x\right)y''+b\left(x\right)y'+c\left(x\right)y=0 a ( x ) y ′′ + b ( x ) y ′ + c ( x ) y = 0
y p y_p y p the particular solution, is any function That satisfies the non-homogenous equation
Find y h y_h y h by solving y ′ ′ − y ′ + 2 y = 0 y''\:-y'\:+2y = 0 y ′′ − y ′ + 2 y = 0 ; y = e x 2 ( c 1 cos ( 7 x 2 ) + c 2 sin ( 7 x 2 ) ) y=e^{\frac{x}{2}}\left(c_1\cos \left(\frac{\sqrt{7}x}{2}\right)+c_2\sin \left(\frac{\sqrt{7}x}{2}\right)\right) y = e 2 x ( c 1 cos ( 2 7 x ) + c 2 sin ( 2 7 x ) )
Find y p y_p y p by solving y ′ ′ − y ′ + 2 y = 2 e x : y''\:-y'\:+2y=2e^x: y ′′ − y ′ + 2 y = 2 e x : y = e x y = e^x y = e x
The general solution y = y h + y p y=y_h+y_p y = y h + y p
y = e x 2 ( c 1 cos ( 7 x 2 ) + c 2 sin ( 7 x 2 ) ) + e x y=e^{\frac{x}{2}}\left(c_1\cos \left(\frac{\sqrt{7}x}{2}\right)+c_2\sin \left(\frac{\sqrt{7}x}{2}\right)\right)+e^x y = e 2 x ( c 1 cos ( 2 7 x ) + c 2 sin ( 2 7 x ) ) + e x
P l o t t i n g : e x 2 ( c 1 cos ( 7 x 2 ) + c 2 sin ( 7 x 2 ) ) + e x a s s u m i n g c 1 = 1 c 2 = 1 \mathrm{Plotting:}\:e^{\frac{x}{2}}\left(c_1\cos \left(\frac{\sqrt{7}x}{2}\right)+c_2\sin \left(\frac{\sqrt{7}x}{2}\right)\right)+e^x\quad \mathrm{assuming}\quad \:c_1=1\quad \:c_2=1 Plotting : e 2 x ( c 1 cos ( 2 7 x ) + c 2 sin ( 2 7 x ) ) + e x assuming c 1 = 1 c 2 = 1
Comments