Question #154890

y''(x) - y'(x) + 2y(x) = 2e^x


1
Expert's answer
2021-01-14T17:54:54-0500

Let's solve this problem

yy+2y=2ex:y''\:-y'\:+2y=2e^x:

Second-order linear non-homogeneous differential equation with constant coefficients

A second order linear, non-homogeneous ODE has formed of ay+by+cy=g(x)ay''+by'+cy=g\left(x\right)

The General solution to a(x)y+b(x)y+c(x)y=g(x)a\left(x\right)y''+b\left(x\right)y'+c\left(x\right)y=g\left(x\right) can be written as

y=yh+ypy=y_h+y_p

yhy_h is the solution to the homogeneous ODE a(x)y+b(x)y+c(x)y=0a\left(x\right)y''+b\left(x\right)y'+c\left(x\right)y=0

ypy_p the particular solution, is any function That satisfies the non-homogenous equation

Find yhy_h by solving yy+2y=0y''\:-y'\:+2y = 0; y=ex2(c1cos(7x2)+c2sin(7x2))y=e^{\frac{x}{2}}\left(c_1\cos \left(\frac{\sqrt{7}x}{2}\right)+c_2\sin \left(\frac{\sqrt{7}x}{2}\right)\right)

Find ypy_p by solving yy+2y=2ex:y''\:-y'\:+2y=2e^x: y=exy = e^x

The general solution y=yh+ypy=y_h+y_p

y=ex2(c1cos(7x2)+c2sin(7x2))+exy=e^{\frac{x}{2}}\left(c_1\cos \left(\frac{\sqrt{7}x}{2}\right)+c_2\sin \left(\frac{\sqrt{7}x}{2}\right)\right)+e^x


Plotting:ex2(c1cos(7x2)+c2sin(7x2))+exassumingc1=1c2=1\mathrm{Plotting:}\:e^{\frac{x}{2}}\left(c_1\cos \left(\frac{\sqrt{7}x}{2}\right)+c_2\sin \left(\frac{\sqrt{7}x}{2}\right)\right)+e^x\quad \mathrm{assuming}\quad \:c_1=1\quad \:c_2=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS