Using charpit's auxilliary equation,
∂f/∂x+p(∂f/∂z)dp=∂f/∂y+q(∂f/∂z)dq=−p(∂f/∂p)−q(∂f/∂q)dz=−∂f/∂pdx=−∂f/∂qdy∂x∂f=p2∂z∂f=−y2∂y∂f=−pq+3qy2−2zy∂p∂f=2xp−yq∂q∂f=−yp+y3so by substitutionp2−py2dp=2qy2−pq−2zydq=−2xp2+2ypq−qy3dz=yq−2xpdx=yp−y3dypdp−ydy=0logp−logy=logalogp=loga+logyp=aysubstitute the value of p in the equation and we have q to bex(ay)2−y(ay)q+q(ay)3−zy2=0q=ay−az−xa2So we usedz=pdx+qdydz=aydx+ay−az−xa2dyby integrating both sides, we havez=axy+(z−xa2)loge(ay−a)z=axy+bloge(ay−a)Where a and b are arbitrary constants
Comments