Question #154229

determine the particular solution of the differential equations y''+9y=e^xcosx, using the method of undetermined coefficient


1
Expert's answer
2021-01-07T16:03:49-0500

y+9y=excosxy''+9y=e^xcosx


we will find particular solution in the form:

yp=Aexcosx+Bexsinxy_p=Ae^xcosx+Be^xsinx


yp=AexcosxAexsinx+Bexsinx+Bexcosx=y_p'=Ae^xcosx-Ae^xsinx+Be^xsinx+Be^xcosx=

=(A+B)excosx+(BA)exsinx=(A+B)e^xcosx+(B-A)e^xsinx


yp=(A+B)excosx(A+B)exsinx+y_p''=(A+B)e^xcosx-(A+B)e^xsinx+

+(BA)exsinx+(BA)excosx=+(B-A)e^xsinx+(B-A)e^xcosx=

=2Bexcosx2Aexsinx=2Be^xcosx-2Ae^xsinx


After substitution into equation:

2Bexcosx2Aexsinx+9Aexcosx+9Bexsinx=2Be^xcosx-2Ae^xsinx+9Ae^xcosx+9Be^xsinx=

=(2B+9A)excosx+(9B2A)exsinx=excosx=(2B+9A)e^xcosx+(9B-2A)e^xsinx=e^xcosx

We have a system of equations:

2B+9A=12B+9A=1

9B2A=09B-2A=0


A=9B2A=\frac{9B}{2}

2B+99B2=12B+9*\frac{9B}{2}=1

B=285B=\frac{2}{85}

A=985A=\frac{9}{85}


Answer: particular solution is

yp=985excosx+485exsinxy_p=\frac{9}{85}e^xcosx+\frac{4}{85}e^xsinx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS