determine the particular solution of the differential equations y''+9y=e^xcosx, using the method of undetermined coefficient
"y''+9y=e^xcosx"
we will find particular solution in the form:
"y_p=Ae^xcosx+Be^xsinx"
"y_p'=Ae^xcosx-Ae^xsinx+Be^xsinx+Be^xcosx="
"=(A+B)e^xcosx+(B-A)e^xsinx"
"y_p''=(A+B)e^xcosx-(A+B)e^xsinx+"
"+(B-A)e^xsinx+(B-A)e^xcosx="
"=2Be^xcosx-2Ae^xsinx"
After substitution into equation:
"2Be^xcosx-2Ae^xsinx+9Ae^xcosx+9Be^xsinx="
"=(2B+9A)e^xcosx+(9B-2A)e^xsinx=e^xcosx"
We have a system of equations:
"2B+9A=1"
"9B-2A=0"
"A=\\frac{9B}{2}"
"2B+9*\\frac{9B}{2}=1"
"B=\\frac{2}{85}"
"A=\\frac{9}{85}"
Answer: particular solution is
"y_p=\\frac{9}{85}e^xcosx+\\frac{4}{85}e^xsinx"
Comments
Leave a comment