dydxβ=x2+2xy+y2dydxβ=(x+y)2dxdyβ=(x+y)21β(x+y)2dxdyβ=11+(x+y)2(x+y)2βdxdyβ=1+(x+y)21β1+(x+y)21+(x+y)2β1βdxdyβ=1+(x+y)21βdxdyββ1+(x+y)21βdxdyβ=1+(x+y)21βdxdyβ=1+(x+y)21β(1+dxdyβ)dxdyβ=1+(x+y)21ββ
dxdβ(x+y)dxdyβ=dxdβ(arctan(x+y))β«dxdyββ
dx=β«dxdβ(arctan(x+y))β
dxy=arctan(x+y)+C
Comments
Leave a comment