Solve the following Bernoulli’s equation: 𝑑𝑥 /𝑑𝑦 = 𝑥2 + 2𝑥𝑦 + 𝑦2
"\\displaystyle\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}y} = x^2 + 2xy + y^2\\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}y} = (x + y)^2\\\\\n\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{1}{(x + y)^2}\\\\\n\n(x + y)^2\\frac{\\mathrm{d}y}{\\mathrm{d}x} = 1\\\\\n\n\n\\frac{(x + y)^2}{1 + (x + y)^2}\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{1}{1 + (x + y)^2}\\\\\n\n\n\n\\frac{1 + (x + y)^2 - 1}{1 + (x + y)^2}\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{1}{1 + (x + y)^2}\\\\\n\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} - \\frac{1}{1 + (x + y)^2}\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{1}{1 + (x + y)^2}\\\\\n\n\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{1}{1 + (x + y)^2}\\left(1 + \\frac{\\mathrm{d}y}{\\mathrm{d}x}\\right)\\\\\n\n\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{1}{1 + (x + y)^2}\\cdot\\frac{\\mathrm{d}}{\\mathrm{d}x}\\left(x + y\\right)\\\\\n\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{\\mathrm{d}}{\\mathrm{d}x}\\left(\\arctan(x + y)\\right)\\\\\n\n\n\\int\\frac{\\mathrm{d}y}{\\mathrm{d}x} \\cdot \\mathrm{d}x= \\int \\frac{\\mathrm{d}}{\\mathrm{d}x}\\left(\\arctan(x + y)\\right) \\cdot \\mathrm{d}x\\\\\n\n\ny = \\arctan(x + y) + C"
Comments
Leave a comment