Answer to Question #154124 in Differential Equations for awais

Question #154124

Solve the following Bernoulli’s equation: 𝑑π‘₯ /𝑑𝑦 = π‘₯2 + 2π‘₯𝑦 + 𝑦2


1
Expert's answer
2021-01-07T14:32:54-0500

dxdy=x2+2xy+y2dxdy=(x+y)2dydx=1(x+y)2(x+y)2dydx=1(x+y)21+(x+y)2dydx=11+(x+y)21+(x+y)2βˆ’11+(x+y)2dydx=11+(x+y)2dydxβˆ’11+(x+y)2dydx=11+(x+y)2dydx=11+(x+y)2(1+dydx)dydx=11+(x+y)2β‹…ddx(x+y)dydx=ddx(arctan⁑(x+y))∫dydxβ‹…dx=∫ddx(arctan⁑(x+y))β‹…dxy=arctan⁑(x+y)+C\displaystyle \frac{\mathrm{d}x}{\mathrm{d}y} = x^2 + 2xy + y^2\\ \frac{\mathrm{d}x}{\mathrm{d}y} = (x + y)^2\\ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{(x + y)^2}\\ (x + y)^2\frac{\mathrm{d}y}{\mathrm{d}x} = 1\\ \frac{(x + y)^2}{1 + (x + y)^2}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + (x + y)^2}\\ \frac{1 + (x + y)^2 - 1}{1 + (x + y)^2}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + (x + y)^2}\\ \frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{1 + (x + y)^2}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + (x + y)^2}\\ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + (x + y)^2}\left(1 + \frac{\mathrm{d}y}{\mathrm{d}x}\right)\\ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + (x + y)^2}\cdot\frac{\mathrm{d}}{\mathrm{d}x}\left(x + y\right)\\ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}\left(\arctan(x + y)\right)\\ \int\frac{\mathrm{d}y}{\mathrm{d}x} \cdot \mathrm{d}x= \int \frac{\mathrm{d}}{\mathrm{d}x}\left(\arctan(x + y)\right) \cdot \mathrm{d}x\\ y = \arctan(x + y) + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment