(D3+D2−4D−4)y=3e−4x−6
Auxiliary equation is: m3+m2−4m−4=0
⇒(m+2)(m−2)(m+1)=0⇒m=2,−2,−1∴C.F.=c1e2x+c2e−2x+c3e−xP.I.=f(D)1f(x)=f(D)1e−4x(3e−6)=e−4x×f(D−4)1×(3e−6)=(D−2)(D−6)(D−3)3e−4x−6=3e−4x−6[12(D−6)1−3(D−3)1+4(D−2)1]=3e−4x−6[12e6x∫e−6xdx−3e3x∫e−3xdx+4e2x∫e−2xdx]=3e−4x−6[−721+91−81]=−12e−4x−6
∴The complete solution is:−y=C.F.+P.I.=c1e2x+c2e−2x+c3e−x−12e−4x−6
So,
y=c1e2x+c2e−2x+c3e−x−121e−4x−6y=c1e2x+c2e−2x+c3e−x−121e−4x−6
Comments