Question #154062

( D^3 + D^2 - 4D - 4) y = 3e^-4x -6


1
Expert's answer
2021-01-11T15:25:20-0500

(D3+D24D4)y=3e4x6( D^3 + D^2 - 4D - 4) y = 3e^{-4x -6}

Auxiliary equation is: m3+m24m4=0m^3+m^2-4m-4=0\\

(m+2)(m2)(m+1)=0m=2,2,1  C.F.=c1e2x+c2e2x+c3ex  P.I.=1f(D)f(x)=1f(D)e4x(3e6)  =e4x×1f(D4)×(3e6)  =3e4x6(D2)(D6)(D3)  =3e4x6[112(D6)13(D3)+14(D2)]  =3e4x6[e6x12e6xdxe3x3e3xdx+e2x4e2xdx]  =3e4x6[172+1918]  =e4x612\Rightarrow (m+2)(m-2)(m+1)=0\\ \Rightarrow m=2,-2,-1\\\;\\ \therefore\text{C.F.}=c_1e^{2x}+c_2e^{-2x}+c_3e^{-x}\\\;\\ \text{P.I.}=\dfrac{1}{f(D)}f(x)=\dfrac{1}{f(D)}e^{-4x}(3e^{-6})\\\;\\ =e^{-4x}\times\dfrac{1}{f(D-4)}\times(3e^{-6})\\\;\\ =\dfrac{3e^{-4x-6}}{(D-2)(D-6)(D-3)}\\\;\\ =3e^{-4x-6}\left[\dfrac{1}{12(D-6)}-\dfrac{1}{3(D-3)}+\dfrac{1}{4(D-2)}\right]\\\;\\ =3e^{-4x-6}\left[\dfrac{e^{6x}}{12}\int e^{-6x}dx-\dfrac{e^{3x}}{3}\int e^{-3x}dx+\dfrac{e^{2x}}{4}\int e^{-2x}dx\right]\\\;\\ =3e^{-4x-6}\left[-\dfrac{1}{72}+\dfrac{1}{9}-\dfrac{1}{8}\right]\\\;\\ =-\dfrac{e^{-4x-6}}{12}


The complete solution is:y=C.F.+P.I.=c1e2x+c2e2x+c3exe4x612\therefore \text{The complete solution is} :-\\ y=\text{C.F.+P.I}.=c_1e^{2x}+c_2e^{-2x}+c_3e^{-x}-\dfrac{e^{-4x-6}}{12}


So,



y=c1e2x+c2e2x+c3ex112e4x6\boxed{\pmb{y=c_1e^{2x}+c_2e^{-2x}+c_3e^{-x}-\dfrac{1}{12}e^{-4x-6}}}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS