Question #153827

Calculate the inverse Laplace transform of the function :

F(s) = (s+1)/ (s³+s²-6s)


1
Expert's answer
2021-01-05T13:11:50-0500

F(s)=s+1s3+s26sF(s)=s+1s3+s26s=(s+1)s(s2)(s+3)=310×1s216×1s215×1s+3F(s)=\frac{s+1}{s^3+s^2-6s}\\ \therefore F(s)\\ =\frac{s+1}{s^3+s^2-6s}\\ =\frac{(s+1)}{s(s-2)(s+3)}\\ =\frac{3}{10}\times \frac{1}{s-2}-\frac{1}{6}\times \frac{1}{s}-\frac{2}{15}\times \frac{1}{s+3}

So,So,

L1{F(s)}=L1{310×1s216×1s215×1s+3}=310L1(1s2)16L1(1s)215L1(1s+3)=310e2t16×1215e3t=310e2t215e3t16\mathcal{L}^{-1}\{F(s)\} \\=\mathcal{L}^{-1}\{\frac{3}{10}\times \frac{1}{s-2}-\frac{1}{6}\times \frac{1}{s}-\frac{2}{15}\times \frac{1}{s+3}\} \\=\frac{3}{10}\mathcal{L}^{-1}\left( \frac{1}{s-2}\right)-\frac{1}{6}\mathcal{L}^{-1}\left( \frac{1}{s}\right)-\frac{2}{15}\mathcal{L}^{-1}\left( \frac{1}{s+3}\right)\\ =\frac{3}{10}e^{2t}-\frac{1}{6}\times1-\frac{2}{15}e^{-3t}\\ =\frac{3}{10}e^{2t}-\frac{2}{15}e^{-3t}-\frac{1}{6}


\pmb\therefore Inverse laplace of of F(s):=310e2t215e3t16\pmb{F(s) :=\frac{3}{10}e^{2t}-\frac{2}{15}e^{-3t}-\frac{1}{6}}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS