F(s)=s3+s2−6ss+1∴F(s)=s3+s2−6ss+1=s(s−2)(s+3)(s+1)=103×s−21−61×s1−152×s+31
So,
L−1{F(s)}=L−1{103×s−21−61×s1−152×s+31}=103L−1(s−21)−61L−1(s1)−152L−1(s+31)=103e2t−61×1−152e−3t=103e2t−152e−3t−61
∴∴ Inverse laplace of of F(s):=103e2t−152e−3t−61F(s):=103e2t−152e−3t−61
Comments