Question #153571

Find the general integral of

2x(y+z2)p+y(2y+z2)q=z2

1
Expert's answer
2021-01-06T17:30:32-0500

2x(y+z2)p+y(2y+z2)q=z22x(y+z2)zx+y(2y+z2)zy=z2dx2x(y+z2)=dyy(2y+z2)=dzz2Multiply through by xyxyydx2xy2+2xyz2=xdy2xy2+xyz2=xydzxyz2ydxxdyxydz2xy2+2xyz22xy2xyz2xyz2=ydxxdyxydz0..........(1)ydxxdyxydz=0Divide through by xydxxdyydz=0Integrate throughlnxlnyz=aln(xy)z=a2x(y+z^2)p+y(2y+z^2)q=z^2\\ 2x(y+z^2)\frac{\partial z}{\partial x}+y(2y+z^2)\frac{\partial z}{\partial y}=z^2\\ \frac{dx}{2x(y+z^2)}=\frac{dy}{y(2y+z^2)}=\frac{dz}{z^2}\\ \text{Multiply through by } \frac{xy}{xy}\\ y\frac{dx}{2xy^2+2xyz^2}=x\frac{dy}{2xy^2+xyz^2}=xy\frac{dz}{xyz^2}\\ \frac{ydx-xdy-xydz}{2xy^2+2xyz^2-2xy^2-xyz^2-xyz^2}=\frac{ydx-xdy-xydz}{0}..........(1)\\ ydx-xdy-xydz=0\\ \text{Divide through by } xy\\ \frac{dx}{x}-\frac{dy}{y}-dz=0\\ \text{Integrate through}\\ \ln x-\ln y-z=a\\ \ln (\frac{x}{y})-z=a


Using x,y,zx, y, z as multipliers. Each fraction if (1) will be

xydxxydyxyzdz2xy2+2xyz22xy2xyz2xyz2=xydxxydyxyzdz0xydxxydyxyzdz=0Divude through by xydxdyzdz=0Integratexyz22=b\frac{xydx-xydy-xyzdz}{2xy^2+2xyz^2-2xy^2-xyz^2-xyz^2}=\frac{xydx-xydy-xyzdz}{0}\\ xydx-xydy-xyzdz=0\\ \text{Divude through by } xy\\ dx-dy-zdz=0\\ \text{Integrate}\\ x-y-\frac{z^2}{2}=b


Therefore, the general solution is f(ln(xy)z,xyz22)=0f(\ln (\frac{x}{y})-z, x-y-\frac{z^2}{2})=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS