2x(y+z2)p+y(2y+z2)q=z22x(y+z2)∂x∂z+y(2y+z2)∂y∂z=z22x(y+z2)dx=y(2y+z2)dy=z2dzMultiply through by xyxyy2xy2+2xyz2dx=x2xy2+xyz2dy=xyxyz2dz2xy2+2xyz2−2xy2−xyz2−xyz2ydx−xdy−xydz=0ydx−xdy−xydz..........(1)ydx−xdy−xydz=0Divide through by xyxdx−ydy−dz=0Integrate throughlnx−lny−z=aln(yx)−z=a
Using x,y,z as multipliers. Each fraction if (1) will be
2xy2+2xyz2−2xy2−xyz2−xyz2xydx−xydy−xyzdz=0xydx−xydy−xyzdzxydx−xydy−xyzdz=0Divude through by xydx−dy−zdz=0Integratex−y−2z2=b
Therefore, the general solution is f(ln(yx)−z,x−y−2z2)=0
Comments