Given ,
pq=xy⇒xp=qy
Let
xp=qy=k⇒p=xkand,q=ky
Now,
dz=pdx+qdy=xkdx+kydy
Integrating both sides,
\;\;\;\int dz=k\int xdx+\frac{1}{k}\int ydy\\\;\\
\Rightarrow z=\frac{kx^2}{2}+\frac{y^2}{2k}+c' \\
[c'\;integrating\;constant]\\\;\\
\Rightarrow2kz=k^2x^2+y^2+c\\
[c=2c'k]
∴ So, the required equation :-
2kz=k2x2+y2+c
Comments