Complete integral of pq=xy
Given ,
"\\;\\;\\;\\;pq=xy\\\\\n\\Rightarrow \\frac{p}{x}=\\frac{y}{q}"
Let
"\\;\\;\\;\\;\\frac{p}{x}=\\frac{y}{q}=k\\\\\n\\Rightarrow p=xk\\;\\;\\;and, \\;\\;\\;q=\\frac{y}{k}"
Now,
"dz=pdx+qdy=xkdx+\\frac{y}{k}dy"
Integrating both sides,
"\\;\\;\\;\\int dz=k\\int xdx+\\frac{1}{k}\\int ydy\\\\\\;\\\\\n\\Rightarrow z=\\frac{kx^2}{2}+\\frac{y^2}{2k}+c' \\\\\n[c'\\;integrating\\;constant]\\\\\\;\\\\\n\\Rightarrow2kz=k^2x^2+y^2+c\\\\\n[c=2c'k]"
"\\therefore" So, the required equation :-
"\\boxed{2kz=k^2x^2+y^2+c}"
Comments
Leave a comment