Question #153386

Complete integral of pq=xy


1
Expert's answer
2021-01-03T14:43:42-0500

Given ,

        pq=xypx=yq\;\;\;\;pq=xy\\ \Rightarrow \frac{p}{x}=\frac{y}{q}

Let

        px=yq=kp=xk      and,      q=yk\;\;\;\;\frac{p}{x}=\frac{y}{q}=k\\ \Rightarrow p=xk\;\;\;and, \;\;\;q=\frac{y}{k}


Now,

dz=pdx+qdy=xkdx+ykdydz=pdx+qdy=xkdx+\frac{y}{k}dy

Integrating both sides,

\;\;\;\int dz=k\int xdx+\frac{1}{k}\int ydy\\\;\\ \Rightarrow z=\frac{kx^2}{2}+\frac{y^2}{2k}+c' \\ [c'\;integrating\;constant]\\\;\\ \Rightarrow2kz=k^2x^2+y^2+c\\ [c=2c'k]


\therefore So, the required equation :-

2kz=k2x2+y2+c\boxed{2kz=k^2x^2+y^2+c}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS