Given: 8ap3=27y , where p=dxdy
Now 8ap3=27y⇒p3=8a27y⇒p3−8a27y=0
⇒p3−(2a313y31)3=0
⇒(p−2a313y31)(p2−2a313y31p+4a329y32)=0
⇒p=2a313y31 , p=22a313y31±4a329y32−a329y32
⇒p=2a313y31,p=22a313y31±2a3133y31i
Observe that p=22a313y31±2a3133y31i are imaginary roots, so it can be discarded.
Now let ustake p=2a313y31
⇒dxdy=2a313y31
Use separation of variables to solve the differential equation.
By using the separation of variables, we have
y31dy=2a313dx
Integrating on both sides, we get
∫y31dy=2a313∫dx
⇒2/3y32=2a313x+c
⇒y32=xa3−1+32c
⇒y32=xa3−1+C,C=32c
Therefore, general solution is
y−(xa3−1+C)23=0
Comments