Question #153014

8ap^3=27y


1
Expert's answer
2020-12-29T17:07:17-0500

Given: 8ap3=27y8ap^3=27y , where p=dydxp=\frac{dy}{dx}

Now 8ap3=27yp3=27y8ap327y8a=08ap^3=27y \Rightarrow p^3=\frac{27y}{8a} \Rightarrow p^3-\frac{27y}{8a}=0

p3(3y132a13)3=0\Rightarrow p^3-(\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}})^3=0

(p3y132a13)(p23y132a13p+9y234a23)=0\Rightarrow (p-\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}})(p^2-\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}}p+\frac{9y^\frac{2}{3}}{4a^\frac{2}{3}})=0

p=3y132a13\Rightarrow p=\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}} , p=3y132a13±9y234a239y23a232p=\frac{\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}}\pm \sqrt{\frac{9y^\frac{2}{3}}{4a^\frac{2}{3}}-\frac{9y^\frac{2}{3}}{a^\frac{2}{3}}}}{2}

p=3y132a13,p=3y132a13±33y132a13i2\Rightarrow p=\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}},p=\frac{\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}}\pm \frac{3\sqrt{3}y^\frac{1}{3}}{2a^\frac{1}{3}}i}{2}

Observe that p=3y132a13±33y132a13i2p=\frac{\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}}\pm \frac{3\sqrt{3}y^\frac{1}{3}}{2a^\frac{1}{3}}i}{2} are imaginary roots, so it can be discarded.

Now let ustake p=3y132a13p=\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}}

dydx=3y132a13\Rightarrow \frac{dy}{dx}=\frac{3y^\frac{1}{3}}{2a^\frac{1}{3}}

Use separation of variables to solve the differential equation.

By using the separation of variables, we have

dyy13=32a13dx\frac{dy}{y^\frac{1}{3}}=\frac{3}{2a^\frac{1}{3}}dx

Integrating on both sides, we get

dyy13=32a13dx\int \frac{dy}{y^\frac{1}{3}}=\frac{3}{2a^\frac{1}{3}}\int dx

y232/3=32a13x+c\Rightarrow \frac{y^\frac{2}{3}}{2/3}=\frac{3}{2a^\frac{1}{3}}x+c

y23=xa13+2c3\Rightarrow y^\frac{2}{3}=xa^\frac{-1}{3}+\frac{2c}{3}

y23=xa13+C,C=2c3\Rightarrow y^\frac{2}{3}=xa^\frac{-1}{3}+C,C=\frac{2c}{3}

Therefore, general solution is

y(xa13+C)32=0y-(xa^\frac{-1}{3}+C)^\frac{3}{2}=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS