solve the following bondry value problems by the method of separation of variables
Ut = Uxx 0<x<1 , t>0
U(0,t)= 0 ,U(pi ,t)= 0
U(x , 0) = sinx + 2sin3x
1
Expert's answer
2020-12-28T11:57:55-0500
∂t∂u=∂x2∂2uLetu(x,t)=X(x)Y(t)X′′Y=XY′=0,X′′Y=XY′X′′Y=XY′=KXX′′=YY′=KXX′′=K,YY′=KIfKis chosen to be negativesayK=−λ2,thenX′′=−λ2XX=Acos(λx)+Bsin(λx)Y′=−λ2YY=Ce−λ2tu(x,t)=(Acos(λx)+Bsin(λx))(Ce−λ2t)u(x,0)=C(Acos(λx)+Bsin(λx))=sin(x)+2sin(3x)u(0,0)=AC=0u(0,t)=ACe−λ2t=0u(0,0)=AC=0Avoiding trivial zeros, we selectA=0u(π,t)=(Acos(πλ)+Bsin(πλ))(Ce−λ2t)=0u(π,t)=(Bsin(πλ))(Ce−λ2t)=0⟹Bsin(πλ)=0,sin(πλ)=sin(nπ)∴λ=nu(x,t)=(Bsin(nx))(Ce−n2t)=Dsin(nx)e−n2tu(x,t)can be superposed as;u(x,t)=n=1∑∞Dnsin(nx)e−n2tu(x,0)=sin(x)+2sin(3x)u(x,0)=sin(x)+2sin(3x)=n=1∑∞Dnsin(nx)We have here a half-range Fourier sineseries representation of a functionu(x,0)defined over0<x<1,Extendingu(x,0)as aneven periodic function with period2andusing standard Fourier series theory givesDn=2∫01(sin(x)+2sin(3x))sin(nx)dx=∫01(cos(x−nx)−cos(x+nx)+2cos(3x−nx)−2cos(3x+nx))=(1−nsin(x−nx)−1+nsin(x+nx)+3−n2sin(3x−nx)−3+n2sin(3+nx))∣∣01=1−nsin(1−n)−1+nsin(1+n)+3−n2sin(3−n)−3+n2sin(3+n)∴u(x,t)=n=1∑∞(1−nsin(1−n)−1+nsin(1+n)+3−n2sin(3−n)−3+n2sin(3+n))sin(nx)e−n2t
Comments