Question #152932
solve (1+2xy cos x^2 -2xy)dx+(sinx^2-x^2)d y=0
1
Expert's answer
2020-12-28T10:51:07-0500

(1+2xycosx22xy)dx+(sinx2x2)dy=0\left(1+2xy\:cos\:x^2\:-2xy\right)dx+\left(sinx^2-x^2\right)d\:y=0


(1+2xycos(x2)2xy)dx+(sin(x2)x2)dy=0\left(1+2xy\cos \left(x^2\right)-2xy\right)dx+\left(\sin \left(x^2\right)-x^2\right)dy=0

First order linear Ordinary Differential Equation

AfirstorderlinearODEhastheformofy(x)+p(x)y=q(x)\mathrm{A\:first\:order\:linear\:ODE\:has\:the\:form\:of\:}y'\left(x\right)+p\left(x\right)y=q\left(x\right)


Let y be the dependent variable, Divide by dx:

1+2xycos(x2)2xy+(sin(x2)x2)dydx=01+2xy\cos \left(x^2\right)-2xy+\left(\sin \left(x^2\right)-x^2\right)\frac{dy}{dx}=0


Substitutedydxwithy\mathrm{Substitute\quad }\frac{dy}{dx}\mathrm{\:with\:}y'


1+2xycos(x2)2xy+(sin(x2)x2)y=01+2xy\cos \left(x^2\right)-2xy+\left(\sin \left(x^2\right)-x^2\right)y'\:=0


We rewrite in the form of a first order linear ODE


y+2x(cos(x2)1)x2+sin(x2)y=1sin(x2)x2y'\:+\frac{2x\left(\cos \left(x^2\right)-1\right)}{-x^2+\sin \left(x^2\right)}y=-\frac{1}{\sin \left(x^2\right)-x^2}


We find integration factor: μ=x2+sin(x2)\mu = -x^2 + \sin \left(x^2\right)

We put the equation in the from (μ(x)y)=μ(x)q(x);((x2+sin(x2))y)=1(\mu(x)⋅y)' = \mu(x) ⋅ q(x); ((-x^2 + sin(x^2))y)' = -1

We solve:

((x2+sin(x2))y)=1;y=xx2+sin(x2)+c1x2+sin(x2)((-x^2 + sin(x^2))y)' = -1;\, y=-\frac{x}{-x^2+\sin \left(x^2\right)}+\frac{c_1}{-x^2+\sin \left(x^2\right)}


y=xx2+sin(x2)+c1x2+sin(x2)y=-\frac{x}{-x^2+\sin \left(x^2\right)}+\frac{c_1}{-x^2+\sin \left(x^2\right)}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
18.03.21, 15:58

Dear Amjad Ali Khan, please use the panel for submitting new questions.

Amjad Ali Khan
18.03.21, 12:05

Dy/dx=(2xycosx^2-2xy-1)/(x^2-sinx^2-3) ?

LATEST TUTORIALS
APPROVED BY CLIENTS