(1+2xycosx2−2xy)dx+(sinx2−x2)dy=0
(1+2xycos(x2)−2xy)dx+(sin(x2)−x2)dy=0
First order linear Ordinary Differential Equation
AfirstorderlinearODEhastheformofy′(x)+p(x)y=q(x)
Let y be the dependent variable, Divide by dx:
1+2xycos(x2)−2xy+(sin(x2)−x2)dxdy=0
Substitutedxdywithy′
1+2xycos(x2)−2xy+(sin(x2)−x2)y′=0
We rewrite in the form of a first order linear ODE
y′+−x2+sin(x2)2x(cos(x2)−1)y=−sin(x2)−x21
We find integration factor: μ=−x2+sin(x2)
We put the equation in the from (μ(x)⋅y)′=μ(x)⋅q(x);((−x2+sin(x2))y)′=−1
We solve:
((−x2+sin(x2))y)′=−1;y=−−x2+sin(x2)x+−x2+sin(x2)c1
y=−−x2+sin(x2)x+−x2+sin(x2)c1
Comments
Dear Amjad Ali Khan, please use the panel for submitting new questions.
Dy/dx=(2xycosx^2-2xy-1)/(x^2-sinx^2-3) ?