Question #152776
2yzdx-2xzdy-(x^2-y^2)(z-1)dz=0
1
Expert's answer
2020-12-28T13:09:51-0500

2yzdx2xzdy(x2y2)(z1)dz=0........................(1)2yzdx-2xzdy-(x^2-y^2)(z-1)dz=0........................(1)

First we take zz to be constant. Then the equation reduces to

2yzdx2xzdy=02yzdx-2xzdy=0

Divide through by 2xyz2xyz

dyydxx=0\frac{dy}{y}-\frac{dx}{x}=0

Integrating, we obtain;

ln(yx)=cy=xc1\ln(\frac{y}{x})=c\\ y=xc_1

We assume that the solution of Eqn(1) is

y=xΨ(z)y=x\Psi(z)

Now, let x=αx=\alpha and, therefore,

y=αΨ(z) is a solution of eqn(1).y=\alpha\Psi(z) \text{ is a solution of eqn(1).}

Since x=α,dx=0x=\alpha,dx=0 . Put this into eqn(1)

2αzdy+(α2y2)(z1)dz=02\alpha zdy+(\alpha^2-y^2)(z-1)dz=0

Divide through by z(α2y2)z(\alpha^2-y^2)

2αα2y2dy+(11z)dz=0\frac{2\alpha}{\alpha^2-y^2}dy+\left(1-\frac{1}{z}\right)dz=0

Integrate through

lnα+yαylnz+z=lnc where c is a constant.\ln|\frac{\alpha+y}{\alpha-y}|-\ln|z|+z=\ln|c| \text{ where } c \text{ is a constant.}

    α+yα+y=czez\implies \frac{\alpha+y}{\alpha+y}=cze^{-z}

But y=αΨ,y=\alpha \Psi, therefore,

α(1+Ψ)α(1Ψ)=1+yx1yx=x+yxy=czez\frac{\alpha(1+\Psi)}{\alpha(1-\Psi)}=\frac{1+\frac{y}{x}}{1-\frac{y}{x}}=\frac{x+y}{x-y}=cze^{-z}

Hence the solution is

(x+y)ez=c(xy)z(x+y)e^z=c(x-y)z


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS