Question #152814

 Find the Fourier Sine transform of f(x) = 1 in   0,l


1
Expert's answer
2020-12-25T15:22:43-0500

F(f(x))=2π0f(x)sin(ωx)dxF(1)=2π0l1×sin(ωx)dx=2π0lsin(ωx)dx=2π0lcos(ωx)ωdx=2πcos(ωx)ω0l=2πcos(ωx)ωl0=2π(1cos(lω)ω)\displaystyle \mathcal{F}(f(x)) = \sqrt{\frac{2}{\pi}}\int_0^\infty f(x)\sin(\omega x) \, \mathrm{d}x\\ \begin{aligned} \mathcal{F}(1) &= \sqrt{\frac{2}{\pi}}\int_0^l 1 \times \sin(\omega x) \, \mathrm{d}x = \sqrt{\frac{2}{\pi}}\int_0^l \sin(\omega x) \, \mathrm{d}x \\&= \sqrt{\frac{2}{\pi}}\int_0^l \frac{-\cos(\omega x)}{\omega} \, \mathrm{d}x \\&= \sqrt{\frac{2}{\pi}}\cdot \frac{-\cos(\omega x)}{\omega}\biggr\vert_0^l = \sqrt{\frac{2}{\pi}} \cdot \frac{\cos(\omega x)}{\omega}\biggr\vert_l^0 \\&= \sqrt{\frac{2}{\pi}}\left(\frac{1 - \cos(l\omega)}{\omega}\right) \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS