Find the Fourier Sine transform of f(x) = 1 in 0,l
"\\displaystyle\n\\mathcal{F}(f(x)) = \\sqrt{\\frac{2}{\\pi}}\\int_0^\\infty f(x)\\sin(\\omega x) \\, \\mathrm{d}x\\\\\n\n\\begin{aligned}\n\\mathcal{F}(1) &= \\sqrt{\\frac{2}{\\pi}}\\int_0^l 1 \\times \\sin(\\omega x) \\, \\mathrm{d}x = \\sqrt{\\frac{2}{\\pi}}\\int_0^l \\sin(\\omega x) \\, \\mathrm{d}x\n\\\\&= \\sqrt{\\frac{2}{\\pi}}\\int_0^l \\frac{-\\cos(\\omega x)}{\\omega} \\, \\mathrm{d}x\n\\\\&= \\sqrt{\\frac{2}{\\pi}}\\cdot \\frac{-\\cos(\\omega x)}{\\omega}\\biggr\\vert_0^l = \\sqrt{\\frac{2}{\\pi}} \\cdot \\frac{\\cos(\\omega x)}{\\omega}\\biggr\\vert_l^0\n\\\\&= \\sqrt{\\frac{2}{\\pi}}\\left(\\frac{1 - \\cos(l\\omega)}{\\omega}\\right)\n\\end{aligned}"
Comments
Leave a comment