Question #152792

dx/y^2 z=dy/xz=dz/yz solution ?


1
Expert's answer
2020-12-25T15:09:50-0500

dxy2z=dyxz=dzyzComparing the first and the second equation,dxy2z=dyxzdxy2=dyxxdxy2dy=0xdxy2dy=0x22y33=CAtC=0x22y33=0,3x22=y3,y=3x223Comparing the first and the third equation,dxy2z=dzyzdxy=dzdx3x223=dzdx3x223=dz233x23dx=dz2333x13+C=zz=213323+C=1813x13+Cz=18x3+Cϕ(z18x3,x22y33)=0is a solution to the PDE\displaystyle \frac{\mathrm{d}x}{y^2 z} = \frac{\mathrm{d}y}{xz} = \frac{\mathrm{d}z}{yz}\\ \textsf{Comparing the first and the second equation,}\\ \frac{\mathrm{d}x}{y^2 z} = \frac{\mathrm{d}y}{xz}\\ \frac{\mathrm{d}x}{y^2} = \frac{\mathrm{d}y}{x}\\ x\mathrm{d}x - y^2\mathrm{d}y = 0\\ \int\,x\mathrm{d}x - \int\,y^2\mathrm{d}y = 0\\ \frac{x^2}{2} - \frac{y^3}{3} = C\\ \textsf{At}\,\, C = 0\\ \frac{x^2}{2} - \frac{y^3}{3} = 0,\,\, \frac{3x^2}{2} = y^3,\,\, y = \sqrt[3]{\frac{3x^2}{2}}\\ \textsf{Comparing the first and the third equation,}\\ \frac{\mathrm{d}x}{y^2 z} = \frac{\mathrm{d}z}{yz}\\ \frac{\mathrm{d}x}{y} = \mathrm{d}z\\ \frac{\mathrm{d}x}{\sqrt[3]{\frac{3x^2}{2}}} = \mathrm{d}z\\ \int\frac{\mathrm{d}x}{\sqrt[3]{\frac{3x^2}{2}}} = \int\mathrm{d}z\\ \int\,\, \sqrt[3]{\frac{2}{3}} x^{-\frac{2}{3}}\mathrm{d}x = \int\mathrm{d}z\\ \sqrt[3]{\frac{2}{3}} \cdot 3x^{\frac{1}{3}} + C = z\\ z = 2^{\frac{1}{3}} 3^{\frac{2}{3}} + C = 18^{\frac{1}{3}} \cdot x^{\frac{1}{3}} + C\\ z = \sqrt[3]{18x} + C\\ \therefore\phi\left(z - \sqrt[3]{18x},\,\, \frac{x^2}{2} - \frac{y^3}{3}\right) = 0\,\,\textsf{is a solution to the PDE}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS