d x y 2 z = d y x z = d z y z Comparing the first and the second equation, d x y 2 z = d y x z d x y 2 = d y x x d x − y 2 d y = 0 ∫ x d x − ∫ y 2 d y = 0 x 2 2 − y 3 3 = C At C = 0 x 2 2 − y 3 3 = 0 , 3 x 2 2 = y 3 , y = 3 x 2 2 3 Comparing the first and the third equation, d x y 2 z = d z y z d x y = d z d x 3 x 2 2 3 = d z ∫ d x 3 x 2 2 3 = ∫ d z ∫ 2 3 3 x − 2 3 d x = ∫ d z 2 3 3 ⋅ 3 x 1 3 + C = z z = 2 1 3 3 2 3 + C = 1 8 1 3 ⋅ x 1 3 + C z = 18 x 3 + C ∴ ϕ ( z − 18 x 3 , x 2 2 − y 3 3 ) = 0 is a solution to the PDE \displaystyle
\frac{\mathrm{d}x}{y^2 z} = \frac{\mathrm{d}y}{xz} = \frac{\mathrm{d}z}{yz}\\
\textsf{Comparing the first and the second equation,}\\
\frac{\mathrm{d}x}{y^2 z} = \frac{\mathrm{d}y}{xz}\\
\frac{\mathrm{d}x}{y^2} = \frac{\mathrm{d}y}{x}\\
x\mathrm{d}x - y^2\mathrm{d}y = 0\\
\int\,x\mathrm{d}x - \int\,y^2\mathrm{d}y = 0\\
\frac{x^2}{2} - \frac{y^3}{3} = C\\
\textsf{At}\,\, C = 0\\
\frac{x^2}{2} - \frac{y^3}{3} = 0,\,\, \frac{3x^2}{2} = y^3,\,\, y = \sqrt[3]{\frac{3x^2}{2}}\\
\textsf{Comparing the first and the third equation,}\\
\frac{\mathrm{d}x}{y^2 z} = \frac{\mathrm{d}z}{yz}\\
\frac{\mathrm{d}x}{y} = \mathrm{d}z\\
\frac{\mathrm{d}x}{\sqrt[3]{\frac{3x^2}{2}}} = \mathrm{d}z\\
\int\frac{\mathrm{d}x}{\sqrt[3]{\frac{3x^2}{2}}} = \int\mathrm{d}z\\
\int\,\, \sqrt[3]{\frac{2}{3}} x^{-\frac{2}{3}}\mathrm{d}x = \int\mathrm{d}z\\
\sqrt[3]{\frac{2}{3}} \cdot 3x^{\frac{1}{3}} + C = z\\
z = 2^{\frac{1}{3}} 3^{\frac{2}{3}} + C = 18^{\frac{1}{3}} \cdot x^{\frac{1}{3}} + C\\
z = \sqrt[3]{18x} + C\\
\therefore\phi\left(z - \sqrt[3]{18x},\,\, \frac{x^2}{2} - \frac{y^3}{3}\right) = 0\,\,\textsf{is a solution to the PDE} y 2 z d x = x z d y = yz d z Comparing the first and the second equation, y 2 z d x = x z d y y 2 d x = x d y x d x − y 2 d y = 0 ∫ x d x − ∫ y 2 d y = 0 2 x 2 − 3 y 3 = C At C = 0 2 x 2 − 3 y 3 = 0 , 2 3 x 2 = y 3 , y = 3 2 3 x 2 Comparing the first and the third equation, y 2 z d x = yz d z y d x = d z 3 2 3 x 2 d x = d z ∫ 3 2 3 x 2 d x = ∫ d z ∫ 3 3 2 x − 3 2 d x = ∫ d z 3 3 2 ⋅ 3 x 3 1 + C = z z = 2 3 1 3 3 2 + C = 1 8 3 1 ⋅ x 3 1 + C z = 3 18 x + C ∴ ϕ ( z − 3 18 x , 2 x 2 − 3 y 3 ) = 0 is a solution to the PDE
Comments