P=zx-y
Q=zy-x
R=1-z2
"\\frac{dx}{P}=\\frac{dy}{Q}=\\frac{dz}{R}"
"\\frac{dx}{zx-y}=\\frac{dy}{zy-x}=\\frac{dz}{1-z^2}"
Multiplyers: z,1,x
zdx+dy-xdz=0
"zx+y+zx=2zx+y=C_1"
Multiplyers: 1,z,y
dx+zdy+ydz=0
"x+zy+zy=x+2zy=C_2"
The general solution is,
"\\phi(c_{1},c_{2})=0\\\\ \\phi\\left(2zx+y, 2zy+x\\right)=0"
Comments
Leave a comment