P=zx-y
Q=zy-x
R=1-z2
dxP=dyQ=dzR\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}Pdx=Qdy=Rdz
dxzx−y=dyzy−x=dz1−z2\frac{dx}{zx-y}=\frac{dy}{zy-x}=\frac{dz}{1-z^2}zx−ydx=zy−xdy=1−z2dz
Multiplyers: z,1,x
zdx+dy-xdz=0
zx+y+zx=2zx+y=C1zx+y+zx=2zx+y=C_1zx+y+zx=2zx+y=C1
Multiplyers: 1,z,y
dx+zdy+ydz=0
x+zy+zy=x+2zy=C2x+zy+zy=x+2zy=C_2x+zy+zy=x+2zy=C2
The general solution is,
ϕ(c1,c2)=0ϕ(2zx+y,2zy+x)=0\phi(c_{1},c_{2})=0\\ \phi\left(2zx+y, 2zy+x\right)=0ϕ(c1,c2)=0ϕ(2zx+y,2zy+x)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments