dt2d2y+2dtdy−3y=sint
The corresponding homogeneous equation y′′+2y′−3y=0 has the characteristics equation m2+2m−3=0
(m−1)(m+3)=0m=1 or m=−3
Yc=C1e1.t+C2e−3tYc=C1et+C2e−3t
The non-homogeneous term is g(t)=sint . We choose Yp=Acost+Bsint
Yp′=Bcost−Asint,Yp′′=−(Acost+Bsint) . Put these into the equation. We have;
−(Acost+Bsint)+2(Bcost−Asint)−3(Acost+Bsint)=sint(−4A+2B)cost+(−2A−4B)sint=sint
Compare both sides
−4A+2B=0.................(1)−2A−4B=1................(2)
From (1), A=2B. Put this into (2)
−5B=1,B=−51A=−101
Therefore,Yp=−101cost−51sint
The general solution y=Yc+Yp
y=C1et+C2e−3t−101cost−51sint
But, y=y′=0 when t=0 . This implies that,
0=C1e0+C2e−3.0−101cos0−51sin00=C1+C2−101101=C1+C2....................(3)
y′=C1et−2C3e−3t+101sint−51cost0=C1e0−3C2e−3.0+101sin0−51sin00=C1−3C2−51C1−3C2=51....................(4)
Subtract (4) from (3)
4C2=101−51=−101,C2=−401
Put this into (3)
C1=101+401=81
Hence, y=81et−401e−3t−101cost−51sint
Comments