Question #152992
solve the equation d²y/dt² + 2dy/dt -3y = sin t , given that y = dy/dt = 0 when t = 0
1
Expert's answer
2020-12-29T15:19:38-0500

d2ydt2+2dydt3y=sint\frac{d^2y}{dt^2}+2\frac{dy}{dt}-3y=\sin t

The corresponding homogeneous equation y+2y3y=0y''+2y'-3y=0 has the characteristics equation m2+2m3=0m^2+2m-3=0

(m1)(m+3)=0m=1 or m=3(m-1)(m+3)=0\\ m=1\text{ or } m=-3

Yc=C1e1.t+C2e3tYc=C1et+C2e3tY_c=C_1e^{1.t}+C_2e^{-3t}\\ Y_c=C_1e^t+C_2e^{-3t}

The non-homogeneous term is g(t)=sintg(t)=\sin t . We choose Yp=Acost+BsintY_p=A\cos t+ B\sin t

Yp=BcostAsint,Yp=(Acost+Bsint)Y'_p=B\cos t-A\sin t, Y''_p=-(A\cos t+B\sin t) . Put these into the equation. We have;

(Acost+Bsint)+2(BcostAsint)3(Acost+Bsint)=sint(4A+2B)cost+(2A4B)sint=sint-(A\cos t+B\sin t)+2(B\cos t-A\sin t)-3(A\cos t+B\sin t)=\sin t\\ (-4A+2B)\cos t+(-2A-4B)\sin t=\sin t

Compare both sides

4A+2B=0.................(1)2A4B=1................(2)-4A+2B=0.................(1)\\ -2A-4B=1................(2)

From (1), A=B2.A=\frac{B}{2}. Put this into (2)

5B=1,B=15A=110-5B=1,B=-\frac{1}{5}\\ A=-\frac{1}{10}

Therefore,Yp=110cost15sintY_p=-\frac{1}{10}\cos t-\frac{1}{5}\sin t

The general solution y=Yc+Ypy=Y_c+Y_p


y=C1et+C2e3t110cost15sinty=C_1e^t+C_2e^{-3t}-\frac{1}{10}\cos t-\frac{1}{5}\sin t


But, y=y=0y=y'=0 when t=0t=0 . This implies that,

0=C1e0+C2e3.0110cos015sin00=C1+C2110110=C1+C2....................(3)0=C_1e^0+C_2e^{-3.0}-\frac{1}{10}\cos 0-\frac{1}{5}\sin 0\\ 0=C_1+C_2-\frac{1}{10}\\ \frac{1}{10}=C_1+C_2....................(3)


y=C1et2C3e3t+110sint15cost0=C1e03C2e3.0+110sin015sin00=C13C215C13C2=15....................(4)y'=C_1e^t-2C_3e^{-3t}+\frac{1}{10}\sin t-\frac{1}{5}\cos t\\ 0=C_1e^0-3C_2e^{-3.0}+\frac{1}{10}\sin 0-\frac{1}{5}\sin 0\\ 0=C_1-3C_2-\frac{1}{5}\\ C_1-3C_2=\frac{1}{5}....................(4)

Subtract (4) from (3)

4C2=11015=110,C2=1404C_2=\frac{1}{10}-\frac{1}{5}=-\frac{1}{10},C_2=-\frac{1}{40}

Put this into (3)

C1=110+140=18C_1=\frac{1}{10}+\frac{1}{40}=\frac{1}{8}


Hence, y=18et140e3t110cost15sinty=\frac{1}{8}e^t-\frac{1}{40}e^{-3t}-\frac{1}{10}\cos t-\frac{1}{5}\sin t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS