Question #153491

Find the integral surface passing through the data curve x=1, z=y2+y of the equation x3 zx+y(3x2+y)zy =z(2x2+y)

1
Expert's answer
2021-01-04T18:59:13-0500

we have to find the integral surface of the given equation:-

x3zx+y(3x2+y)zy=z(2x2+y)x^3z_x+y(3x^2+y)z_y=z(2x^2+y)

It is Lagrange's partial differential equation of type:

Pp+Qq=RPp+Qq=R

So, the

Lagrange's auxiliary equation will be

dxx3=dyy(3x2+y)=dzz(2x2+y)\frac{dx}{x^3}=\frac{dy}{y(3x^2+y)}=\frac{dz}{z(2x^2+y)}

At first we take

dxx3=dyy(3x2+y)    dydx=y(3x2+y)x3    1y2dydx=3x2y+1x3    dtdx=3tx+1x3    dtdx+3tx=1x3    tx3=(1x3)(x3)dx    tx3=(1)dx    tx3=x+c1    x3y=x+c1.............(1)\frac{dx}{x^3}=\frac{dy}{y(3x^2+y)}\\\implies\frac{dy}{dx}=\frac{y(3x^2+y)}{x^3}\\\implies\frac{1}{y^2}\frac{dy}{dx}=\frac{\frac{3x^2}{y}+1}{x^3}\\\implies-\frac{dt}{dx}=\frac{3t}{x}+\frac{1}{x^3}\\\implies\frac{dt}{dx}+\frac{3t}{x}=-\frac{1}{x^3}\\\\\\\\\implies tx^3=\intop(-\frac{1}{x^3})(x^3)dx\\\implies tx^3=\intop(-1)dx\\\implies tx^3=-x+c_1\\\implies\frac{x^3}{y}=-x+c_1.............(1)

[ let 1y=t;\frac{1}{y}=t ; & the integrating factor e(3dxx)e^(\intop\frac{3dx}{x})\\

    e(ln(x3))    x3\implies e^(\ln(x^3))\\\implies x^3 ]

now we will take

dxx3=dyy(3x2+y)=dzz(2x2+y)=zdyydzyz(3x2+y)yz(2x2+y)=zdyydzx2yz    dxx3=zdyydzx2yz    dxx=zdyydzyz    dxxdyy+dzz=0    dxxdyy+dzz=0    lnxzy=ln(c2)    xzy=c2............(2)\frac{dx}{x^3}=\frac{dy}{y(3x^2+y)}=\frac{dz}{z(2x^2+y)}\\=\frac {zdy-ydz}{yz(3x^2+y)-yz(2x^2+y)}=\frac{zdy-ydz}{x^2yz}\\\implies\frac{dx}{x^3}=\frac{zdy-ydz}{x^2yz}\\\implies\frac{dx}{x}=\frac{zdy-ydz}{yz}\\\implies\frac{dx}{x}-\frac{dy}{y}+\frac{dz}{z}=0\\\implies\intop\frac{dx}{x}-\intop\frac{dy}{y}+\intop\frac{dz}{z}=0\\\implies\ln\frac{xz}{y}=\ln(c_2)\\\implies\frac{xz}{y}=c_2............(2)

x=1& z=y2+yy^2+y values are given

putting the values in the equations (1)&(2) we get

c1=1y+1........(3)c2=(y+1).......(4)c_1=\frac{1}{y}+1........(3)\\c_2=(y+1).......(4)

putting the value of y of equation(4) in equation(3) we get

(c21)(c11)=1    (xzy1)(x3y+x1)=1......(5)(c_2-1)(c_1-1)=1\\\implies(\frac{xz}{y}-1)(\frac{x^3}{y}+x-1)=1......(5)

hence the equation (5) is the required integral surface.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS