we have to find the integral surface of the given equation:-
x3zx+y(3x2+y)zy=z(2x2+y)
It is Lagrange's partial differential equation of type:
Pp+Qq=R
So, the
Lagrange's auxiliary equation will be
x3dx=y(3x2+y)dy=z(2x2+y)dz
At first we take
x3dx=y(3x2+y)dy⟹dxdy=x3y(3x2+y)⟹y21dxdy=x3y3x2+1⟹−dxdt=x3t+x31⟹dxdt+x3t=−x31⟹tx3=∫(−x31)(x3)dx⟹tx3=∫(−1)dx⟹tx3=−x+c1⟹yx3=−x+c1.............(1)
[ let y1=t; & the integrating factor e(∫x3dx)
⟹e(ln(x3))⟹x3 ]
now we will take
x3dx=y(3x2+y)dy=z(2x2+y)dz=yz(3x2+y)−yz(2x2+y)zdy−ydz=x2yzzdy−ydz⟹x3dx=x2yzzdy−ydz⟹xdx=yzzdy−ydz⟹xdx−ydy+zdz=0⟹∫xdx−∫ydy+∫zdz=0⟹lnyxz=ln(c2)⟹yxz=c2............(2)
x=1& z=y2+y values are given
putting the values in the equations (1)&(2) we get
c1=y1+1........(3)c2=(y+1).......(4)
putting the value of y of equation(4) in equation(3) we get
(c2−1)(c1−1)=1⟹(yxz−1)(yx3+x−1)=1......(5)
hence the equation (5) is the required integral surface.
Comments