Question #153503

Reduce the equation into canonical form and find the solution

sin2x uxx+2cosx uxy - uyy=0


1
Expert's answer
2021-01-15T13:47:48-0500

sin2x.uxx+2cosx.uxyuyy=0        ...(1)A=sin2x,  B=2cosx,  C=1sin^2x.u_{xx}+2cosx.u_{xy}-u_{yy}=0\;\;\;\;...(1)\\ A=sin^2x,\;B=2cosx,\;C=-1

B24AC=4(cos2x+sin2x)=4>0B^2-4AC=4(cos^2x+sin^2x)=4>0

So, (1) hyperbolic.


Aλ2Bλ+C=0λ=cosx+1    or,  cosx1  dydx=cosx+1  or,  cosx1y=sinx+x+c1    or,  sinxx+c2let,ϕ(x,y)=ysinxx,    φ(x,y)=ysinx+xA\lambda^2-B\lambda+C=0\\ \Rightarrow \lambda=cosx+1\;\;or, \;cosx-1\\\;\\ \therefore \frac{dy}{dx}=cosx+1\;or, \;cosx-1\\ \Rightarrow y=sinx+x+c_1\;\;or, \;sinx-x+c_2\\ let, \phi(x,y)=y-sinx-x ,\;\;\varphi(x,y)=y-sinx+x


Let, ζ=ϕ(x,y),    η=φ(x,y)\zeta=\phi(x,y), \;\; \eta=\varphi (x,y)

So,

ζ=ϕ(x,y)=ysinxxζx=cosx1ζy=1ζyy=0ζxx=sinxand,η=φ(x,y)=ysinx+xηx=cosx+1ηy=1ηyy=0ηxx=sinx\zeta =\phi(x,y)=y-sinx-x\\ \zeta_x=-cosx-1\\ \zeta _y=1\\ \zeta_{yy}=0\\ \zeta _{xx}=sinx \\ and,\\ \eta =\varphi(x,y)=y-sin x+x\\ \eta _x=-cosx+1\\ \eta_y=1\\ \eta_{yy}=0\\ \eta_{xx}=sinx


Now,

uxx=uζ(ζx2)+2uζηζxηx+uηηηx2+uζζxx+uηηxxuxy=uζζζxζy+uζη(ζxηy+ζyηx)+uηηηxηy+uζζxy+uηηxyuyy=uζζζy2+2uζηζyηy+uηηηy2+uζζyy+uηηyyu_{xx} = u_{\zeta}(\zeta_x^2) + 2u_{\zetaη}\zeta_xη_x + u_{ηη}η_x^2 + u_{\zeta}\zeta_{xx} + u_ηη_{xx}\\ u_{xy} = u_{\zeta\zeta}\zeta_x\zeta_y + u_{\zetaη}(\zeta_xη_y + \zeta_yη_x) + u_{ηη}η_xη_y + u_\zeta\zeta_{xy} + u_ηη_{xy}\\ u_{yy} = u_{\zeta\zeta}\zeta_y^2 + 2u_{\zetaη}\zeta_yη_y + u_{ηη}η_y^2 + u_\zeta\zeta_{yy} + u_ηη_{yy}


Putting above values in (1)(1),

we get,

(cos4x+2cos2x+3)uζη+uζζ(cos4x+2cos3x+2cos2x)+uηη(cos4x2cos3x+2cos2x)=uζsin3x      ...(2)\left(cos^4x+2cos^2x+3\right)u_{\zeta\eta}\\ +u_{\zeta\zeta}(cos^4x+2cos^3x+2cos^2x)\\+u_{\eta\eta}(cos^4x-2cos^3x+2cos^2x)=u_{\zeta}sin^3x\;\;\;...(2)\\


From expressions of ζ  and  η,\zeta \;and\;\eta,

x=12(ηζ)x=\frac{1}{2}(\eta-\zeta)\\

Now from (2),

(cos412(ηζ)+2cos212(ηζ)+3)uζη+uζζ(cos412(ηζ)+2cos312(ηζ)+2cos212(ηζ))+uηη(cos412(ηζ)2cos312(ηζ)+2cos212(ηζ))=uζsin312(ηζ)      ...(2)\left(cos^4\frac{1}{2}(\eta-\zeta)+2cos^2\frac{1}{2}(\eta-\zeta)+3\right)u_{\zeta\eta}\\ +u_{\zeta\zeta}(cos^4\frac{1}{2}(\eta-\zeta)+2cos^3\frac{1}{2}(\eta-\zeta)+2cos^2\frac{1}{2}(\eta-\zeta))\\+u_{\eta\eta}(cos^4\frac{1}{2}(\eta-\zeta)-2cos^3\frac{1}{2}(\eta-\zeta)+2cos^2\frac{1}{2}(\eta-\zeta))\\=u_{\zeta}sin^3\frac{1}{2}(\eta-\zeta)\;\;\;...(2)\\


Hence the required canonical form is :




(cos412(ηζ)+2cos212(ηζ)+3)uζη+uζζ(cos412(ηζ)+2cos312(ηζ)+2cos212(ηζ))+uηη(cos412(ηζ)2cos312(ηζ)+2cos212(ηζ))=uζsin312(ηζ)      \left(cos^4\frac{1}{2}(\eta-\zeta)+2cos^2\frac{1}{2}(\eta-\zeta)+3\right)u_{\zeta\eta}\\ +u_{\zeta\zeta}(cos^4\frac{1}{2}(\eta-\zeta)+2cos^3\frac{1}{2}(\eta-\zeta)+2cos^2\frac{1}{2}(\eta-\zeta))\\+u_{\eta\eta}(cos^4\frac{1}{2}(\eta-\zeta)-2cos^3\frac{1}{2}(\eta-\zeta)+2cos^2\frac{1}{2}(\eta-\zeta))\\=u_{\zeta}sin^3\frac{1}{2}(\eta-\zeta)\;\;\;

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS