Question #153486

Find the integral surface passing through the initial data curve C: x0= -1, y0= s, z0= (s)1/2 of the equation (x+2)p +2yq =2z


1
Expert's answer
2021-01-01T14:54:51-0500

we have to find the integral surface of the equation :

(x+2)p+2yq=2z..........(1)(x+2)p+2yq=2z..........(1)

From observation we can see that it is "Lagrange's partial differential equation" of type

Pp+Qq=RPp+Qq=R

So, from equation(1)(1) we get Lagrange's auxiliary equation

dxx+2=dy2y=dz2z.............(2)\frac{dx}{x+2}=\frac {dy}{2y}=\frac{dz}{2z}\,.............(2)

Now we take

dxx+2=dy2y\frac{dx}{x+2}=\frac{dy}{2y}

    dxx+2=dy2y    ln(x+2)=12lny+lnc1    ln(x+2)ln(y)=lnc1    x+2y=c1............(3)\implies\intop\frac{dx}{x+2}=\intop\frac{dy}{2y}\\\implies\ln(x+2)=\frac{1}{2}\ln y+\ln c_1\\\implies\ln(x+2)-\ln(\sqrt{y})=ln c_1\\\implies\frac{x+2}{\sqrt{y}}=c_1............(3)


we will take another equation

dy2y=dz2z    dz2z=dy2y    12lnz12lny=lnc2    zy=c2    zy=c2..............(4)\frac{dy}{2y}=\frac{dz}{2z}\\\implies\intop\frac{dz}{2z}=\intop\frac{dy}{2y}\\\implies\frac{1}{2}\ln z-\frac{1}{2}ln y=\ln\sqrt{c_2}\\\implies\sqrt{\frac{z}{y}}=\sqrt{c_2}\\\implies\frac{z}{y}=c_2..............(4)

Now it is given that

x0=1;y0=s0;z0=s0x_0=-1;y_0=s_0;z_0=\sqrt{s_0}\\

putting the values of x0;y0;z0x_0;y_0;z_0 in the equation (3) &(4) we get

c1=1s0c_1=\sqrt{\frac{1}{s_0}} & c2=c_2= 1s0\sqrt{\frac{1}{s_0}}

now putting the values of C1& C2 we get

x+2y=1s0.......(5)\frac{x+2}{\sqrt{y}}=\sqrt{\frac{1}{s_0}}.......(5) & zy=1s0..........(6)\frac{z}{y}=\sqrt{\frac{1}{s_0}}..........(6)

now subtracting equation (5) to equation (6) we will get

x+2y=\frac{x+2}{\sqrt{y}}= zy\frac{z}{y}

Hence

x+2y=\frac{x+2}{\sqrt{y}}= zy\frac{z}{y} ; is the equation of the integral surface of the given equation.







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS