we have to find the integral surface of the equation :
( x + 2 ) p + 2 y q = 2 z . . . . . . . . . . ( 1 ) (x+2)p+2yq=2z..........(1) ( x + 2 ) p + 2 y q = 2 z .......... ( 1 )
From observation we can see that it is "Lagrange's partial differential equation" of type
P p + Q q = R Pp+Qq=R Pp + Qq = R
So, from equation( 1 ) (1) ( 1 ) we get Lagrange's auxiliary equation
d x x + 2 = d y 2 y = d z 2 z . . . . . . . . . . . . . ( 2 ) \frac{dx}{x+2}=\frac {dy}{2y}=\frac{dz}{2z}\,.............(2) x + 2 d x = 2 y d y = 2 z d z ............. ( 2 )
Now we take
d x x + 2 = d y 2 y \frac{dx}{x+2}=\frac{dy}{2y} x + 2 d x = 2 y d y
⟹ ∫ d x x + 2 = ∫ d y 2 y ⟹ ln ( x + 2 ) = 1 2 ln y + ln c 1 ⟹ ln ( x + 2 ) − ln ( y ) = l n c 1 ⟹ x + 2 y = c 1 . . . . . . . . . . . . ( 3 ) \implies\intop\frac{dx}{x+2}=\intop\frac{dy}{2y}\\\implies\ln(x+2)=\frac{1}{2}\ln y+\ln c_1\\\implies\ln(x+2)-\ln(\sqrt{y})=ln c_1\\\implies\frac{x+2}{\sqrt{y}}=c_1............(3) ⟹ ∫ x + 2 d x = ∫ 2 y d y ⟹ ln ( x + 2 ) = 2 1 ln y + ln c 1 ⟹ ln ( x + 2 ) − ln ( y ) = l n c 1 ⟹ y x + 2 = c 1 ............ ( 3 )
we will take another equation
d y 2 y = d z 2 z ⟹ ∫ d z 2 z = ∫ d y 2 y ⟹ 1 2 ln z − 1 2 l n y = ln c 2 ⟹ z y = c 2 ⟹ z y = c 2 . . . . . . . . . . . . . . ( 4 ) \frac{dy}{2y}=\frac{dz}{2z}\\\implies\intop\frac{dz}{2z}=\intop\frac{dy}{2y}\\\implies\frac{1}{2}\ln z-\frac{1}{2}ln y=\ln\sqrt{c_2}\\\implies\sqrt{\frac{z}{y}}=\sqrt{c_2}\\\implies\frac{z}{y}=c_2..............(4) 2 y d y = 2 z d z ⟹ ∫ 2 z d z = ∫ 2 y d y ⟹ 2 1 ln z − 2 1 l n y = ln c 2 ⟹ y z = c 2 ⟹ y z = c 2 .............. ( 4 )
Now it is given that
x 0 = − 1 ; y 0 = s 0 ; z 0 = s 0 x_0=-1;y_0=s_0;z_0=\sqrt{s_0}\\ x 0 = − 1 ; y 0 = s 0 ; z 0 = s 0
putting the values of x 0 ; y 0 ; z 0 x_0;y_0;z_0 x 0 ; y 0 ; z 0 in the equation (3) &(4) we get
c 1 = 1 s 0 c_1=\sqrt{\frac{1}{s_0}} c 1 = s 0 1 & c 2 = c_2= c 2 = 1 s 0 \sqrt{\frac{1}{s_0}} s 0 1
now putting the values of C1 & C2 we get
x + 2 y = 1 s 0 . . . . . . . ( 5 ) \frac{x+2}{\sqrt{y}}=\sqrt{\frac{1}{s_0}}.......(5) y x + 2 = s 0 1 ....... ( 5 ) & z y = 1 s 0 . . . . . . . . . . ( 6 ) \frac{z}{y}=\sqrt{\frac{1}{s_0}}..........(6) y z = s 0 1 .......... ( 6 )
now subtracting equation (5) to equation (6) we will get
x + 2 y = \frac{x+2}{\sqrt{y}}= y x + 2 = z y \frac{z}{y} y z
Hence
x + 2 y = \frac{x+2}{\sqrt{y}}= y x + 2 = z y \frac{z}{y} y z ; is the equation of the integral surface of the given equation.
Comments