Question #153825

Obtain the inverse Laplace transform of t cos pt, p is not equal to 0.


1
Expert's answer
2021-01-05T14:06:32-0500

F(t)=tcos(pt),p0L1{F(s)}=ddt(L1{cos(ps)})+L1{cos(ps)}(0)F(t)=tcos(pt),p\neq0\\ \therefore \mathcal{L}^{-1}\{F(s)\}\\ =\frac{d}{dt}\left(\mathcal{L}^{-1}\left\{\cos \left(ps\right)\right\}\right)+\mathcal{L}^{-1}\left\{\cos \left(ps\right)\right\}\left(0\right)

Now L1{cos(ps)}:No  solution  for  standard  function\mathcal{L}^{-1}\left\{\cos \left(ps\right)\right\} : No \; solution \;for\; standard \; function


L1{F(s)}\mathcal{L}^{-1}\{F(s)\} has no solution.


Now for Laplace transform,

F(t)=tcos(pt)=12p2pcos(pt)=12p[(sin(pt)+pcos(pt))(sin(pt)ptcos(pt))]F(t)\\ =tcos(pt)\\ =\frac{1}{2p}2pcos(pt)\\ =\frac{1}{2p}\left[(sin(pt)+pcos(pt))-(sin(pt)-ptcos(pt))\right]

  L{F(t)}=L(12p[(sin(pt)+pcos(pt))(sin(pt)ptcos(pt))])=12p[L(sin(pt)+pcos(pt))L(sin(pt)ptcos(pt))]=12p[2ps2(s2+p2)22p3(s2+p2)2]=12p×2ps22p3(s2+p2)2=12p×2p(s2p2)(s2+p2)2=s2p2(s2+p2)2\\\;\\ \therefore \mathcal{L}\{F(t)\}\\ =\mathcal{L}\left(\frac{1}{2p}\left[(sin(pt)+pcos(pt))-(sin(pt)-ptcos(pt))\right]\right)\\ =\frac{1}{2p}\left[\mathcal{L}(sin(pt)+pcos(pt))-\mathcal{L}(sin(pt)-ptcos(pt))\right]\\ = \frac{1}{2p}\left[\frac{{2p{s^2}}}{{{{\left( {{s^2} + {p^2}} \right)}^2}}}-\frac{{2{p^3}}}{{{{\left( {{s^2} + {p^2}} \right)}^2}}}\right]\\ =\frac{1}{2p}\times \frac{{2ps^2-2{p^3}}}{{{{\left( {{s^2} + {p^2}} \right)}^2}}} =\frac{1}{2p}\times \frac{{2p(s^2-p^2)}}{{{{\left( {{s^2} + {p^2}} \right)}^2}}}\\ =\frac{s^2-p^2}{(s^2+p^2)^2}


Therefore, Laplace transform of F(t)=s2p2(s2+p2)2\pmb{F(t)=\frac{s^2-p^2}{(s^2+p^2)^2}} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS