Substitutions X=x-2, Y=y-1 is clear from solving stationary point equations:
x+3y−5=0x−y−1=0 => x=2y=1
Equation in terms of the variable z was integrated as follows:
dXdzX=1−z(z+1)2 => (z+1)2(1−z)dz=XdX => (z+1)22−(1+z)dz=XdX
Integrating
∫(z+1)22−(1+z)dz=∫XdX => ∫(z+1)22dz−∫z+1dz=∫XdX =>−z+12−ln∣z+1∣=ln∣X∣−C => C=z+12+ln∣z+1∣+ln∣X∣
Remember z=Y/X. So from here
C=XY+12+ln∣XY+1∣+ln∣X∣ => C=X+Y2X+ln∣X+Y∣
Comments