Question #153578

1. (x+3y-5)dx-(x-y-1)dy=0


1
Expert's answer
2021-01-05T17:27:12-0500

Substitutions X=x-2, Y=y-1 is clear from solving stationary point equations:

x+3y5=0xy1=0\begin{aligned} x+3y-5=0 \\ x-y-1=0 \end{aligned} => x=2y=1\begin{aligned} x=2 \\ y=1 \end{aligned}

Equation in terms of the variable z was integrated as follows:


dzdXX=(z+1)21z\frac{dz}{dX}X=\frac{(z+1)^2}{1-z} => (1z)dz(z+1)2=dXX\frac{(1-z)dz}{(z+1)^2}=\frac{dX}{X} => 2(1+z)(z+1)2dz=dXX\frac{2-(1+z)}{(z+1)^2}dz=\frac{dX}{X}

Integrating

2(1+z)(z+1)2dz=dXX\int\frac{2-(1+z)}{(z+1)^2}dz=\int\frac{dX}{X} => 2dz(z+1)2dzz+1=dXX\int\frac{2dz}{(z+1)^2}-\int\frac{dz}{z+1}=\int\frac{dX}{X} =>2z+1lnz+1=lnXC-\frac{2}{z+1}-ln|z+1|=ln|X|-C => C=2z+1+lnz+1+lnXC=\frac{2}{z+1}+ln|z+1|+ln|X|

Remember z=Y/X. So from here

C=2YX+1+lnYX+1+lnXC=\frac{2}{\frac{Y}{X}+1}+ln|\frac{Y}{X}+1|+ln|X| => C=2XX+Y+lnX+YC=\frac{2X}{X+Y}+ln|X+Y|


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS