Answer to Question #154087 in Differential Equations for Sakshi Naik Gaonkar

Question #154087

Compute W(y1,y2) where y1 and y2 are solutions of the differential equation y"+y'+y=0


1
Expert's answer
2021-01-06T19:58:35-0500


y''+y'+y=0 is a linear homogeneous differential equation with constant coefficients.

The solution is sought in the form of an exponent y = eλxe^{\lambda x} .

We write the characteristic equation assuming that

y' = λ\lambdaeλxe^{\lambda x} ; y'' = λ\lambda2eλxe^{\lambda x}

Hence

λ\lambda2eλxe^{\lambda x} + λ\lambdaeλxe^{\lambda x} + eλxe^{\lambda x} = 0 or eλxe^{\lambda x} ( λ\lambda2 + λ\lambda + 1) = 0

λ\lambda2 + λ\lambda + 1 = 0 is the caracteristic equation.

The above equation is the standard quadratic equation:

D = b2 - 4ac; a=b=c=1

D = 12 -4*1*1 = -3

λ\lambda1,2 = b±D2a\frac{ - b ± \sqrt{\smash[b]{D}}}{2a}

λ\lambda1 = 1+i32\frac{ - 1 + i \sqrt{\smash[b]{3}}}{2}

λ\lambda2 = 1i32\frac{ - 1 - i \sqrt{\smash[b]{3}}}{2}

y = c1exp( λ\lambda1x) + c2exp( λ\lambda2x)

y1 = c1exp( 1+i32\frac{ - 1 + i \sqrt{\smash[b]{3}}}{2}x)

y2 = c2exp( 1i32\frac{ - 1 - i \sqrt{\smash[b]{3}}}{2}x)

If y = u(x)+iv(x) is a solution to the equation then y1=u(x) and y2=iv(x) (here i = 1\sqrt-1 ) are solutions too.

Hence:

we can write

y1=c1ex2e^\frac{-x}{2}sin(32\frac{\sqrt3}{2}x);

y2=c2ex2e^\frac{-x}{2} cos(32\frac{\sqrt3}{2}x)

W = y1y2y1y2\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}

y'1 = c1{\lbrace -12\frac{1}{2}ex2e^\frac{-x}{2}sin(32\frac{\sqrt{\smash[b]{3}}}{2}x) +32\frac{\sqrt{\smash[b]{3}}}{2}ex2e^\frac{-x}{2}cos(32\frac{\sqrt{\smash[b]{3}}}{2}x)}\rbrace

y'2 = c2{\lbrace -12\frac{1}{2}ex2e^\frac{-x}{2}cos(32\frac{\sqrt{\smash[b]{3}}}{2}x) -32\frac{\sqrt{\smash[b]{3}}}{2}ex2e^\frac{-x}{2}sin(32\frac{\sqrt{\smash[b]{3}}}{2}x)}\rbrace


W = c1ex2sin(32x)c2ex2cos(32x)c1ex22{sin(32x)+3cos(32x)}c2ex22{cos(32x)+3sin(32x)}\begin{vmatrix} c_1e^\frac{-x}{2}sin(\frac{\sqrt3}{2}x) & c_2e^\frac{-x}{2}cos(\frac{\sqrt3}{2}x) \\ \frac{c_1e^\frac{-x}{2}}{2}\lbrace-sin(\frac{\sqrt3}{2}x)+\sqrt3cos(\frac{\sqrt3}{2}x)\rbrace & \frac{-c_2e^\frac{-x}{2}}{2}\lbrace cos(\frac{\sqrt3}{2}x)+\sqrt3sin(\frac{\sqrt3}{2}x)\rbrace \end{vmatrix} =

= c1ex2sin(32x)(c2ex22){cos(32x)+3sin(32x)}c_1e^\frac{-x}{2}sin(\frac{\sqrt3}{2}x)(\frac{-c_2e^\frac{-x}{2}}{2})\lbrace cos(\frac{\sqrt3}{2}x)+\sqrt3sin(\frac{\sqrt3}{2}x)\rbrace-

c2ex2cos(32x)(c1ex22){sin(32x)+3cos(32x)}=- c_2e^\frac{-x}{2}cos(\frac{\sqrt3}{2}x)(\frac{c_1e^\frac{-x}{2}}{2})\lbrace-sin(\frac{\sqrt3}{2}x)+\sqrt3cos(\frac{\sqrt3}{2}x)\rbrace =


=c1c22ex{cos(32x)sin(32x)cos(32x)sin(32x)++3sin2(32x)+3cos2(32x)}== - \frac{c_1c_2}{2}e^{-x}\lbrace \bcancel{cos(\frac{\sqrt3}{2}x)sin(\frac{\sqrt3}{2}x)} - \bcancel{cos(\frac{\sqrt3}{2}x)sin(\frac{\sqrt3}{2}x)} + \\ +\sqrt3sin^2(\frac{\sqrt3}{2}x)+\sqrt3cos^2(\frac{\sqrt3}{2}x) \rbrace=

=32c1c2ex=- \frac{\sqrt3}{2}c_1c_2e^{-x}

ifc1=c2=1W==32exif\\ c_1=c_2=1 \\W = =- \frac{\sqrt3}{2}e^{-x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment