y''+y'+y=0 is a linear homogeneous differential equation with constant coefficients.
The solution is sought in the form of an exponent y = eλx .
We write the characteristic equation assuming that
y' = λeλx ; y'' = λ2eλx
Hence
λ2eλx + λeλx + eλx = 0 or eλx ( λ2 + λ + 1) = 0
λ2 + λ + 1 = 0 is the caracteristic equation.
The above equation is the standard quadratic equation:
D = b2 - 4ac; a=b=c=1
D = 12 -4*1*1 = -3
λ1,2 = 2a−b±D
λ1 = 2−1+i3
λ2 = 2−1−i3
y = c1exp( λ1x) + c2exp( λ2x)
y1 = c1exp( 2−1+i3x)
y2 = c2exp( 2−1−i3x)
If y = u(x)+iv(x) is a solution to the equation then y1=u(x) and y2=iv(x) (here i = −1 ) are solutions too.
Hence:
we can write
y1=c1e2−xsin(23x);
y2=c2e2−x cos(23x)
W = ∣∣y1y1′y2y2′∣∣
y'1 = c1{ -21e2−xsin(23x) +23e2−xcos(23x)}
y'2 = c2{ -21e2−xcos(23x) -23e2−xsin(23x)}
W = ∣∣c1e2−xsin(23x)2c1e2−x{−sin(23x)+3cos(23x)}c2e2−xcos(23x)2−c2e2−x{cos(23x)+3sin(23x)}∣∣ =
= c1e2−xsin(23x)(2−c2e2−x){cos(23x)+3sin(23x)}−
−c2e2−xcos(23x)(2c1e2−x){−sin(23x)+3cos(23x)}=
=−2c1c2e−x{cos(23x)sin(23x)−cos(23x)sin(23x)++3sin2(23x)+3cos2(23x)}=
=−23c1c2e−x
ifc1=c2=1W==−23e−x
Comments
Leave a comment