y''+y'+y=0 is a linear homogeneous differential equation with constant coefficients.
The solution is sought in the form of an exponent y = e λ x e^{\lambda x} e λ x .
We write the characteristic equation assuming that
y' = λ \lambda λ e λ x e^{\lambda x} e λ x ; y'' = λ \lambda λ 2 e λ x e^{\lambda x} e λ x
Hence
λ \lambda λ 2 e λ x e^{\lambda x} e λ x + λ \lambda λ e λ x e^{\lambda x} e λ x + e λ x e^{\lambda x} e λ x = 0 or e λ x e^{\lambda x} e λ x ( λ \lambda λ 2 + λ \lambda λ + 1) = 0
λ \lambda λ 2 + λ \lambda λ + 1 = 0 is the caracteristic equation.
The above equation is the standard quadratic equation:
D = b2 - 4ac; a=b=c=1
D = 12 -4*1*1 = -3
λ \lambda λ 1,2 = − b ± D 2 a \frac{ - b ± \sqrt{\smash[b]{D}}}{2a} 2 a − b ± D
λ \lambda λ 1 = − 1 + i 3 2 \frac{ - 1 + i \sqrt{\smash[b]{3}}}{2} 2 − 1 + i 3
λ \lambda λ 2 = − 1 − i 3 2 \frac{ - 1 - i \sqrt{\smash[b]{3}}}{2} 2 − 1 − i 3
y = c 1 exp( λ \lambda λ 1 x) + c 2 exp( λ \lambda λ 2 x)
y 1 = c 1 exp( − 1 + i 3 2 \frac{ - 1 + i \sqrt{\smash[b]{3}}}{2} 2 − 1 + i 3 x)
y 2 = c 2 exp( − 1 − i 3 2 \frac{ - 1 - i \sqrt{\smash[b]{3}}}{2} 2 − 1 − i 3 x)
If y = u(x)+iv(x) is a solution to the equation then y 1 =u(x) and y 2 =iv(x) (here i = − 1 \sqrt-1 − 1 ) are solutions too.
Hence:
we can write
y 1 =c 1 e − x 2 e^\frac{-x}{2} e 2 − x sin( 3 2 \frac{\sqrt3}{2} 2 3 x);
y 2 =c 2 e − x 2 e^\frac{-x}{2} e 2 − x cos( 3 2 \frac{\sqrt3}{2} 2 3 x)
W = ∣ y 1 y 2 y 1 ′ y 2 ′ ∣ \begin{vmatrix}
y_1 & y_2 \\
y'_1 & y'_2
\end{vmatrix} ∣ ∣ y 1 y 1 ′ y 2 y 2 ′ ∣ ∣
y'1 = c1 { \lbrace { -1 2 \frac{1}{2} 2 1 e − x 2 e^\frac{-x}{2} e 2 − x sin(3 2 \frac{\sqrt{\smash[b]{3}}}{2} 2 3 x) +3 2 \frac{\sqrt{\smash[b]{3}}}{2} 2 3 e − x 2 e^\frac{-x}{2} e 2 − x cos(3 2 \frac{\sqrt{\smash[b]{3}}}{2} 2 3 x)} \rbrace }
y'2 = c2 { \lbrace { -1 2 \frac{1}{2} 2 1 e − x 2 e^\frac{-x}{2} e 2 − x cos(3 2 \frac{\sqrt{\smash[b]{3}}}{2} 2 3 x) -3 2 \frac{\sqrt{\smash[b]{3}}}{2} 2 3 e − x 2 e^\frac{-x}{2} e 2 − x sin(3 2 \frac{\sqrt{\smash[b]{3}}}{2} 2 3 x)} \rbrace }
W = ∣ c 1 e − x 2 s i n ( 3 2 x ) c 2 e − x 2 c o s ( 3 2 x ) c 1 e − x 2 2 { − s i n ( 3 2 x ) + 3 c o s ( 3 2 x ) } − c 2 e − x 2 2 { c o s ( 3 2 x ) + 3 s i n ( 3 2 x ) } ∣ \begin{vmatrix}
c_1e^\frac{-x}{2}sin(\frac{\sqrt3}{2}x) & c_2e^\frac{-x}{2}cos(\frac{\sqrt3}{2}x) \\
\frac{c_1e^\frac{-x}{2}}{2}\lbrace-sin(\frac{\sqrt3}{2}x)+\sqrt3cos(\frac{\sqrt3}{2}x)\rbrace & \frac{-c_2e^\frac{-x}{2}}{2}\lbrace cos(\frac{\sqrt3}{2}x)+\sqrt3sin(\frac{\sqrt3}{2}x)\rbrace
\end{vmatrix} ∣ ∣ c 1 e 2 − x s in ( 2 3 x ) 2 c 1 e 2 − x { − s in ( 2 3 x ) + 3 cos ( 2 3 x )} c 2 e 2 − x cos ( 2 3 x ) 2 − c 2 e 2 − x { cos ( 2 3 x ) + 3 s in ( 2 3 x )} ∣ ∣ =
= c 1 e − x 2 s i n ( 3 2 x ) ( − c 2 e − x 2 2 ) { c o s ( 3 2 x ) + 3 s i n ( 3 2 x ) } − c_1e^\frac{-x}{2}sin(\frac{\sqrt3}{2}x)(\frac{-c_2e^\frac{-x}{2}}{2})\lbrace cos(\frac{\sqrt3}{2}x)+\sqrt3sin(\frac{\sqrt3}{2}x)\rbrace- c 1 e 2 − x s in ( 2 3 x ) ( 2 − c 2 e 2 − x ) { cos ( 2 3 x ) + 3 s in ( 2 3 x )} −
− c 2 e − x 2 c o s ( 3 2 x ) ( c 1 e − x 2 2 ) { − s i n ( 3 2 x ) + 3 c o s ( 3 2 x ) } = - c_2e^\frac{-x}{2}cos(\frac{\sqrt3}{2}x)(\frac{c_1e^\frac{-x}{2}}{2})\lbrace-sin(\frac{\sqrt3}{2}x)+\sqrt3cos(\frac{\sqrt3}{2}x)\rbrace = − c 2 e 2 − x cos ( 2 3 x ) ( 2 c 1 e 2 − x ) { − s in ( 2 3 x ) + 3 cos ( 2 3 x )} =
= − c 1 c 2 2 e − x { c o s ( 3 2 x ) s i n ( 3 2 x ) − c o s ( 3 2 x ) s i n ( 3 2 x ) + + 3 s i n 2 ( 3 2 x ) + 3 c o s 2 ( 3 2 x ) } = = - \frac{c_1c_2}{2}e^{-x}\lbrace \bcancel{cos(\frac{\sqrt3}{2}x)sin(\frac{\sqrt3}{2}x)} - \bcancel{cos(\frac{\sqrt3}{2}x)sin(\frac{\sqrt3}{2}x)} +
\\ +\sqrt3sin^2(\frac{\sqrt3}{2}x)+\sqrt3cos^2(\frac{\sqrt3}{2}x) \rbrace= = − 2 c 1 c 2 e − x { cos ( 2 3 x ) s in ( 2 3 x ) − cos ( 2 3 x ) s in ( 2 3 x ) + + 3 s i n 2 ( 2 3 x ) + 3 co s 2 ( 2 3 x )} =
= − 3 2 c 1 c 2 e − x =- \frac{\sqrt3}{2}c_1c_2e^{-x} = − 2 3 c 1 c 2 e − x
i f c 1 = c 2 = 1 W = = − 3 2 e − x if\\ c_1=c_2=1 \\W = =- \frac{\sqrt3}{2}e^{-x} i f c 1 = c 2 = 1 W == − 2 3 e − x
Comments