P=bc(b-c)yz=b2cyz - bc2yz
Q=ca(c-a)xz=c2axz - ca2xz
R=ab(a-b)xy=a2bxy - ab2xy
Pdx=Qdy=Rdz
b2cyz−bc2yzdx=c2axz−ca2xzdy=a2bxy−ab2xydz
Multiplyers: ax,by,cz
axdx+bydy+czdz=0
1/2(ax2+by2+cz2)=C1
Multiplyers: -ax,-by,-cz
-axdx-bydy-czdz=0
-1/2(ax2+by2+cz2)=C2
The general solution is,
ϕ(c1,c2)=0
ϕ(1/2(ax2+by2+cz2),−1/2(ax2+by2+cz2))=0
Comments