bc(b-c)yzp+ca(c-a)xzq=ab(a-b)xy
P=bc(b-c)yz=b2cyz - bc2yz
Q=ca(c-a)xz=c2axz - ca2xz
R=ab(a-b)xy=a2bxy - ab2xy
"\\frac{dx}{P}=\\frac{dy}{Q}=\\frac{dz}{R}"
"\\frac{dx}{b^2cyz - bc^2yz}=\\frac{dy}{c^2axz - ca^2xz}=\\frac{dz}{a^2bxy - ab^2xy}"
Multiplyers: ax,by,cz
axdx+bydy+czdz=0
1/2(ax2+by2+cz2)=C1
Multiplyers: -ax,-by,-cz
-axdx-bydy-czdz=0
-1/2(ax2+by2+cz2)=C2
The general solution is,
"\\phi(c_{1},c_{2})=0"
"\\phi( 1\/2(ax^2+by^2+cz^2),-1\/2(ax^2+by^2+cz^2))=0"
Comments
Leave a comment