Question #154623

Solve:y``-3y`+2y=e²t;y(0)=3;y-1(0)=5 by laplace transform


1
Expert's answer
2021-01-11T18:37:11-0500

Let us solve y3y+2y=e2t, y(0)=3, y(0)=5y''-3y'+2y=e^{2t},\ y(0)=3,\ y'(0)=5 using laplace transform:


yY,  ypY3,  yp2Y3p5,  e2t1p2y\to Y,\ \ y'\to pY-3,\ \ y''\to p^2Y-3p-5,\ \ e^{2t}\to \frac{1}{p-2}


p2Y3p53pY+9+2Y=1p2p^2Y-3p-5-3pY+9+2Y=\frac{1}{p-2}


Y(p23p+2)3p+4=1p2Y(p^2-3p+2)-3p+4=\frac{1}{p-2}


Y(p23p+2)=1p2+3p4=3p210p+9p2Y(p^2-3p+2)=\frac{1}{p-2}+3p-4=\frac{3p^2-10p+9}{p-2}


Y=3p210p+9(p23p+2)(p2)=3p210p+9(p1)(p2)2Y=\frac{3p^2-10p+9}{(p^2-3p+2)(p-2)}=\frac{3p^2-10p+9}{(p-1)(p-2)^2}


3p210p+9(p1)(p2)2=Ap1+Bp2+C(p2)2=A(p2)2+B(p1)(p2)+C(p1)(p1)(p2)2\frac{3p^2-10p+9}{(p-1)(p-2)^2}=\frac{A}{p-1}+\frac{B}{p-2}+\frac{C}{(p-2)^2}=\frac{A(p-2)^2+B(p-1)(p-2)+C(p-1)}{(p-1)(p-2)^2}


3p210p+9=Ap24Ap+4A+Bp23Bp+2B+CpC3p^2-10p+9=Ap^2-4Ap+4A+Bp^2-3Bp+2B+Cp-C


3p210p+9=(A+B)p2+(4A3B+C)p+4A+2BC3p^2-10p+9=(A+B)p^2+(-4A-3B+C)p+4A+2B-C


It follows that we have the following system:


{A+B=34A3B+C=104A+2BC=9\begin{cases} A+B=3\\ -4A-3B+C=-10\\ 4A+2B-C=9 \end{cases}


{A=2B=1C=1\begin{cases} A=2\\ B=1\\ C=1 \end{cases}


Therefore, Y=2p1+1p2+1(p2)2Y=\frac{2}{p-1}+\frac{1}{p-2}+\frac{1}{(p-2)^2}


Since 1p1et,  1p2e2t,  1(p2)2te2t,\frac{1}{p-1}\to e^t,\ \ \frac{1}{p-2}\to e^{2t},\ \ \frac{1}{(p-2)^2}\to te^{2t}, we conclude that the solution of the differential equation is the following:


y(t)=2et+e2t+te2t.y(t)=2e^t+e^{2t}+te^{2t}.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS