Let us solve y′′−3y′+2y=e2t, y(0)=3, y′(0)=5 using laplace transform:
y→Y, y′→pY−3, y′′→p2Y−3p−5, e2t→p−21
p2Y−3p−5−3pY+9+2Y=p−21
Y(p2−3p+2)−3p+4=p−21
Y(p2−3p+2)=p−21+3p−4=p−23p2−10p+9
Y=(p2−3p+2)(p−2)3p2−10p+9=(p−1)(p−2)23p2−10p+9
(p−1)(p−2)23p2−10p+9=p−1A+p−2B+(p−2)2C=(p−1)(p−2)2A(p−2)2+B(p−1)(p−2)+C(p−1)
3p2−10p+9=Ap2−4Ap+4A+Bp2−3Bp+2B+Cp−C
3p2−10p+9=(A+B)p2+(−4A−3B+C)p+4A+2B−C
It follows that we have the following system:
⎩⎨⎧A+B=3−4A−3B+C=−104A+2B−C=9
⎩⎨⎧A=2B=1C=1
Therefore, Y=p−12+p−21+(p−2)21
Since p−11→et, p−21→e2t, (p−2)21→te2t, we conclude that the solution of the differential equation is the following:
y(t)=2et+e2t+te2t.
Comments