Given, (y−xz)p+(yz−x)q=(x+y)(x−y).
⇒(y−xz)p+(yz−x)q=x2−y2
This equation is of the form Pp+Qq=R (Lagrange's linear partial differential equation).
Here, P=y−xz,Q=yz−x,R=x2−y2.
The subsidiary equations are
Pdx=Qdy=Rdzy−xzdx=yz−xdy=x2−y2dz −(1).
Each ratio of (1) is equal to (y2−x2)zxdx+ydy=(1+z)(y−x)dx+dy.
Let us consider,
(y2−x2)zxdx+ydy=x2−y2dz⇒xdx+ydy+zdz=0Integrating, ∫xdx+∫ydy+∫zdz=0⇒2x2+2y2+2z2=2c1⇒x2+y2+z2=c1
Consider,
(1+z)(y−x)dx+dy=(x+y)(x−y)dz⇒1+zdx+dy=−(x+y)dz⇒−(x+y)d(x+y)=(1+z)dzIntegrating,−∫(x+y)d(x+y)=∫(1+z)dz⇒−2(x+y)2=2(1+z)2−2c2⇒(1+z)2+(x+y)2=c2
The general solution is,
ϕ(c1,c2)=0ϕ(x2+y2+z2,((1+z)2+(x+y)2))=0.
Comments
Leave a comment