Answer to Question #154252 in Differential Equations for Prakash

Question #154252

solve (y-xz)p+(yz-x)q=(x+y)(x-y)


1
Expert's answer
2021-01-07T18:14:24-0500

Given, (yxz)p+(yzx)q=(x+y)(xy)(y-xz)p+(yz-x)q = (x+y)(x-y).

(yxz)p+(yzx)q=x2y2\Rightarrow(y-xz)p+(yz-x)q = x^2-y^2


This equation is of the form Pp+Qq=RPp+Qq=R (Lagrange's linear partial differential equation).

Here, P=yxz,Q=yzx,R=x2y2P = y-xz, Q=yz-x, R = x^{2}-y^{2}.


The subsidiary equations are

dxP=dyQ=dzRdxyxz=dyyzx=dzx2y2           (1)\dfrac{dx}{P}=\dfrac{dy}{Q}=\dfrac{dz}{R}\\ \dfrac{dx}{y-xz}=\dfrac{dy}{yz-x}=\dfrac{dz}{x^{2}-y^{2}}~~~~~~~~~~~-(1).

Each ratio of (1) is equal to xdx+ydy(y2x2)z=dx+dy(1+z)(yx)\dfrac{xdx+ydy}{(y^{2}-x^{2})z} = \dfrac{dx+dy}{(1+z)(y-x)}.

Let us consider,

xdx+ydy(y2x2)z=dzx2y2xdx+ydy+zdz=0Integrating, xdx+ydy+zdz=0x22+y22+z22=c12  x2+y2+z2=c1\dfrac{xdx+ydy}{(y^{2}-x^{2})z} = \dfrac{dz}{x^{2}-y^{2}}\\\Rightarrow xdx+ydy+zdz=0\\ \text{Integrating, }\\ \int xdx + \int ydy + \int zdz=0\\\Rightarrow \dfrac{x^{2}}{2}+\dfrac{y^{2}}{2} +\dfrac{z^{2}}{2}=\dfrac{c_{1}}{2}\\\;\\\Rightarrow x^{2}+y^{2}+z^{2}=c_{1}


Consider,

dx+dy(1+z)(yx)=dz(x+y)(xy)dx+dy1+z=dz(x+y)(x+y)d(x+y)=(1+z)dzIntegrating,(x+y)d(x+y)=(1+z)dz(x+y)22=(1+z)22c22  (1+z)2+(x+y)2=c2\dfrac{dx+dy}{(1+z)(y-x)}=\dfrac{dz}{(x+y)(x-y)}\\\Rightarrow \dfrac{dx+dy}{1+z}=\dfrac{dz}{-(x+y)}\\\Rightarrow -(x+y)d(x+y)=(1+z)dz\\ \text{Integrating,}\\ -\int (x+y)d(x+y)=\int (1+z)dz\\\Rightarrow -\dfrac{(x+y)^2}{2}=\dfrac{(1+z)^{2}}{2}-\dfrac{c_{2}}{2}\\\;\\ \Rightarrow (1+z)^{2}+(x+y)^{2}=c_{2}


The general solution is,

ϕ(c1,c2)=0ϕ(x2+y2+z2,((1+z)2+(x+y)2))=0.\phi(c_{1},c_{2})=0\\ \phi\left(x^{2}+y^{2}+z^{2},\left((1+z)^{2}+(x+y)^{2}\right)\right)=0.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment