Question #154230

Show that y=x+tanx satisfies the differential equation cos2x d2y /dx2 -2y+2x=0


1
Expert's answer
2021-01-07T15:33:14-0500

Given, y=x+tanx...(i)y=x+\tan x ...(i)

On differentiating both sides w.r.t xx ,

dydx=1+sec2x\frac{dy}{dx}=1+\sec ^2x

Again, differentiating both sides w.r.t xx ,

d2ydx2=0+2secxd(secx)dx=2secxsecxtanxd2ydx2=2sec2xtanx...(ii)\frac{d^2y}{dx^2}=0+2\sec x \frac{d (\sec x)}{dx}=2\sec x \sec x\tan x \\\Rightarrow \frac{d^2y}{dx^2}=2\sec^2 x \tan x ...(ii)

Now, differential equation is: cos2xd2ydx22y+2x=0\cos ^2x \frac{d^2y}{dx^2}-2y+2x=0

Put values from equation (i) and (ii) into LHS of this, we get:

=cos2x(2sec2xtanx)2(x+tanx)+2x=\cos ^2x (2\sec^2 x \tan x)-2(x+\tan x)+2x

=cos2x(2×1cos2xtanx)2x2tanx+2x [ secx=1cosx]=2tanx2x2tanx+2x=0+0=0=RHS=\cos ^2x (2 \times\frac{1}{\cos ^2x} \tan x)-2x-2\tan x+2x \ [\because \ \sec x=\frac{1}{\cos x}] \\ =2 \tan x-2x-2\tan x+2x \\ =0+0 \\ =0 \\ =RHS

Hence, proved.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS