Given: ( D 2 + 2 D + 5 ) y = x e x (D^2+2D+5)y=xe^x ( D 2 + 2 D + 5 ) y = x e x
Here, D = d d x D=\frac{d}{dx} D = d x d
So, we can rewrite it as: d 2 y d x 2 + 2 d y d x + 5 y = x e x \frac{d^2y}{dx^2}+2\frac{dy}{dx}+5y=xe^x d x 2 d 2 y + 2 d x d y + 5 y = x e x ... (i)
First, we find y c y_c y c , complimentary function.
Consider d 2 y d x 2 + 2 d y d x + 5 y = 0 \frac{d^2y}{dx^2}+2\frac{dy}{dx}+5y=0 d x 2 d 2 y + 2 d x d y + 5 y = 0
Its auxiliary equation is: m 2 + 2 m + 5 = 0 m^2+2m+5=0 m 2 + 2 m + 5 = 0
On solving by quadratic formula,
m = − 2 ± 2 2 − 4 ( 1 ) ( 5 ) 2 ( 1 ) = − 2 ± 4 − 20 2 = − 1 ± 2 i m=\frac{-2\pm\sqrt{2^2-4(1)(5)}}{2(1)}=\frac{-2\pm\sqrt{4-20}}{2}=-1\pm2i m = 2 ( 1 ) − 2 ± 2 2 − 4 ( 1 ) ( 5 ) = 2 − 2 ± 4 − 20 = − 1 ± 2 i
Thus, the solution of homogeneous equation is:
y c = e − 1 x ( A cos 2 x + B sin 2 x ) = A e − x cos 2 x + B e − x sin 2 x y_c=e^{-1x}(A\cos2x+B\sin2x)=Ae^{-x}\cos2x+Be^{-x}\sin2x y c = e − 1 x ( A cos 2 x + B sin 2 x ) = A e − x cos 2 x + B e − x sin 2 x
Now, we find particular solution of non-homogeneous equation.
Assume y = ( a x + b ) e x y=(ax+b)e^x y = ( a x + b ) e x be the solution ...(ii)
We find a and b by substitution and comparison.
On differentiating (ii) w.r.t x x x ,
d y d x = ( a x + b ) e x + ( a ) e x ⇒ d y d x = ( a x + a + b ) e x \frac{dy}{dx}=(ax+b)e^x+(a)e^x
\\ \Rightarrow\frac{dy}{dx}=(ax+a+b)e^x d x d y = ( a x + b ) e x + ( a ) e x ⇒ d x d y = ( a x + a + b ) e x
Again, differentiating it w.r.t x x x ,
d 2 y d x 2 = ( a x + a + b ) e x + a e x ⇒ d 2 y d x 2 = ( a x + 2 a + b ) e x \frac{d^2y}{dx^2}=(ax+a+b)e^x+ae^x
\\ \Rightarrow \frac{d^2y}{dx^2}=(ax+2a+b)e^x d x 2 d 2 y = ( a x + a + b ) e x + a e x ⇒ d x 2 d 2 y = ( a x + 2 a + b ) e x
Now substituting these values in (i), we get,
( a x + 2 a + b ) e x + 2 ( a x + a + b ) e x + 5 ( a x + b ) e x = x e x ⇒ ( a x + 2 a + b ) + 2 ( a x + a + b ) + 5 ( a x + b ) = x (ax+2a+b)e^x+2(ax+a+b)e^x+5(ax+b)e^x=xe^x
\\ \Rightarrow (ax+2a+b)+2(ax+a+b)+5(ax+b)=x ( a x + 2 a + b ) e x + 2 ( a x + a + b ) e x + 5 ( a x + b ) e x = x e x ⇒ ( a x + 2 a + b ) + 2 ( a x + a + b ) + 5 ( a x + b ) = x
⇒ ( 8 a ) x + ( 4 a + 8 b ) = 1 x + 0 \Rightarrow (8a)x+(4a+8b)=1x+0 ⇒ ( 8 a ) x + ( 4 a + 8 b ) = 1 x + 0
On comparing,
8 a = 1 ⇒ a = 1 8 4 a + 8 b = 0 ⇒ 8 b = − 4 a ⇒ b = − a 2 8a=1\Rightarrow a=\frac 1 8
\\ 4a+8b=0 \Rightarrow 8b=-4a \Rightarrow b=-\frac{a}{2} 8 a = 1 ⇒ a = 8 1 4 a + 8 b = 0 ⇒ 8 b = − 4 a ⇒ b = − 2 a
So, b = − 1 2 × 1 8 = − 1 16 b=-\frac1 2 \times \frac 1 8=-\frac 1 {16} b = − 2 1 × 8 1 = − 16 1
So, y p = ( 1 8 x − 1 16 ) e x = x e x 8 − e x 16 y_p=(\frac1 8x-\frac 1 {16})e^x=\frac{xe^x}{8}-\frac{e^x}{16} y p = ( 8 1 x − 16 1 ) e x = 8 x e x − 16 e x
Thus, y ( x ) = y c + y p y(x)=y_c+y_p y ( x ) = y c + y p
= A e − x cos 2 x + B e − x sin 2 x + x e x 8 − e x 16 =Ae^{-x}\cos2x+Be^{-x}\sin2x+\frac{xe^x}{8}-\frac{e^x}{16} = A e − x cos 2 x + B e − x sin 2 x + 8 x e x − 16 e x
Answer : y ( x ) = A e − x cos 2 x + B e − x sin 2 x + x e x 8 − e x 16 y(x)=Ae^{-x}\cos2x+Be^{-x}\sin2x+\frac{xe^x}{8}-\frac{e^x}{16} y ( x ) = A e − x cos 2 x + B e − x sin 2 x + 8 x e x − 16 e x
Comments