Question #154634

(D^2+2D+5)y=xe^x


1
Expert's answer
2021-01-11T18:35:20-0500

Given: (D2+2D+5)y=xex(D^2+2D+5)y=xe^x

Here, D=ddxD=\frac{d}{dx}

So, we can rewrite it as: d2ydx2+2dydx+5y=xex\frac{d^2y}{dx^2}+2\frac{dy}{dx}+5y=xe^x ... (i)

First, we find ycy_c , complimentary function.

Consider d2ydx2+2dydx+5y=0\frac{d^2y}{dx^2}+2\frac{dy}{dx}+5y=0

Its auxiliary equation is: m2+2m+5=0m^2+2m+5=0

On solving by quadratic formula,

m=2±224(1)(5)2(1)=2±4202=1±2im=\frac{-2\pm\sqrt{2^2-4(1)(5)}}{2(1)}=\frac{-2\pm\sqrt{4-20}}{2}=-1\pm2i

Thus, the solution of homogeneous equation is:

yc=e1x(Acos2x+Bsin2x)=Aexcos2x+Bexsin2xy_c=e^{-1x}(A\cos2x+B\sin2x)=Ae^{-x}\cos2x+Be^{-x}\sin2x

Now, we find particular solution of non-homogeneous equation.

Assume y=(ax+b)exy=(ax+b)e^x be the solution ...(ii)

We find a and b by substitution and comparison.

On differentiating (ii) w.r.t xx ,

dydx=(ax+b)ex+(a)exdydx=(ax+a+b)ex\frac{dy}{dx}=(ax+b)e^x+(a)e^x \\ \Rightarrow\frac{dy}{dx}=(ax+a+b)e^x

Again, differentiating it w.r.t xx ,

d2ydx2=(ax+a+b)ex+aexd2ydx2=(ax+2a+b)ex\frac{d^2y}{dx^2}=(ax+a+b)e^x+ae^x \\ \Rightarrow \frac{d^2y}{dx^2}=(ax+2a+b)e^x

Now substituting these values in (i), we get,

(ax+2a+b)ex+2(ax+a+b)ex+5(ax+b)ex=xex(ax+2a+b)+2(ax+a+b)+5(ax+b)=x(ax+2a+b)e^x+2(ax+a+b)e^x+5(ax+b)e^x=xe^x \\ \Rightarrow (ax+2a+b)+2(ax+a+b)+5(ax+b)=x

(8a)x+(4a+8b)=1x+0\Rightarrow (8a)x+(4a+8b)=1x+0

On comparing,

8a=1a=184a+8b=08b=4ab=a28a=1\Rightarrow a=\frac 1 8 \\ 4a+8b=0 \Rightarrow 8b=-4a \Rightarrow b=-\frac{a}{2}

So, b=12×18=116b=-\frac1 2 \times \frac 1 8=-\frac 1 {16}

So, yp=(18x116)ex=xex8ex16y_p=(\frac1 8x-\frac 1 {16})e^x=\frac{xe^x}{8}-\frac{e^x}{16}

Thus, y(x)=yc+ypy(x)=y_c+y_p

=Aexcos2x+Bexsin2x+xex8ex16=Ae^{-x}\cos2x+Be^{-x}\sin2x+\frac{xe^x}{8}-\frac{e^x}{16}

Answer: y(x)=Aexcos2x+Bexsin2x+xex8ex16y(x)=Ae^{-x}\cos2x+Be^{-x}\sin2x+\frac{xe^x}{8}-\frac{e^x}{16}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS