Given: (D2+2D+5)y=xex
Here, D=dxd
So, we can rewrite it as: dx2d2y+2dxdy+5y=xex ... (i)
First, we find yc , complimentary function.
Consider dx2d2y+2dxdy+5y=0
Its auxiliary equation is: m2+2m+5=0
On solving by quadratic formula,
m=2(1)−2±22−4(1)(5)=2−2±4−20=−1±2i
Thus, the solution of homogeneous equation is:
yc=e−1x(Acos2x+Bsin2x)=Ae−xcos2x+Be−xsin2x
Now, we find particular solution of non-homogeneous equation.
Assume y=(ax+b)ex be the solution ...(ii)
We find a and b by substitution and comparison.
On differentiating (ii) w.r.t x ,
dxdy=(ax+b)ex+(a)ex⇒dxdy=(ax+a+b)ex
Again, differentiating it w.r.t x ,
dx2d2y=(ax+a+b)ex+aex⇒dx2d2y=(ax+2a+b)ex
Now substituting these values in (i), we get,
(ax+2a+b)ex+2(ax+a+b)ex+5(ax+b)ex=xex⇒(ax+2a+b)+2(ax+a+b)+5(ax+b)=x
⇒(8a)x+(4a+8b)=1x+0
On comparing,
8a=1⇒a=814a+8b=0⇒8b=−4a⇒b=−2a
So, b=−21×81=−161
So, yp=(81x−161)ex=8xex−16ex
Thus, y(x)=yc+yp
=Ae−xcos2x+Be−xsin2x+8xex−16ex
Answer: y(x)=Ae−xcos2x+Be−xsin2x+8xex−16ex
Comments