The given partial differential equation is
(y+ x)p + (y− x)q = z
The Lagrange’s auxiliary equations are
y+xdx=y−xdy=dzintegrating the first two ratio, we havey+xdx=y−xdydxdy=y+xy−xsolving by homogeneous first order differential equationy=vxdxdy=v+xdxdvv+xdxdv=vx+xvx−xxdxdv=v+1v−1−vxdxdv=v+1−(v2+1)xdx=−v2+1v+1dvxdx+v2+1v+1dv=o∫xdx+∫v2+1v+1dv=c1c1=logex+21loge(v2+1)+v1tan−1vC1=21loge(yx3+1)+xytan−1yxintegrating the last two ratioy−xdy=zdzy=vzdzdy=v+zdzdvv+zdzdv=zvz−xzdzdv=zvz−x−vzdzdv=z−xz2dv=−xdz∫z2dv=∫−xdzz2v+xz=c2xz2y+xz=c2ϕ(21loge(yx3+1)+xytan−1yx,xz2y+xz)=0ϕis an arbitrary constant
Comments