Question #154666

Find the integral surface for the differential equation z(xzx-yzy)=y2-x2 passing through the initial data curve (2s, s, s)


1
Expert's answer
2021-01-15T14:20:38-0500

z(xzxyzy)=y2x2xzxyzy=y2x2zP=x,Q=y,R=y2x2zdxdt=P=xdxx=dt Integratelnx=t+c1x=C1etFrom the initial curve, we know that x(0)=2sC1=2sx=2set....................(1)Similarly, dydt=Q=ylny=t+c2y=C2ety(0)=sC2=sy=set................(2)Also,dzdt=R=y2x2zzdz=(y2x2)dtz22=(y2x2)t+c3z(0)=sc3=s22z2=2(y2x2)t+s2...............(3)z(xz_x-yz_y)=y^2-x^2\\ xz_x-yz_y=\frac{y^2-x^2}{z}\\ P=x , Q=-y, R=\frac{y^2-x^2}{z}\\ \frac{dx}{dt}=P=x\\ \frac{dx}{x}=dt \text{ Integrate}\\ \ln x=t+c_1\\ x=C_1e^t\\ \text{From the initial curve, we know that } x(0)=2s\\ C_1=2s\\ x=2se^t....................(1)\\ \text{Similarly, }\\ \frac{dy}{dt}=Q=-y\\ -\ln y=t+c_2\\ y=C_2e^{-t}\\ y(0)=s\\ C_2=s\\ y=se^{-t}................(2)\\ \text{Also,}\\ \frac{dz}{dt}=R=\frac{y^2-x^2}{z}\\ zdz=(y^2-x^2)dt\\ \frac{z^2}{2}=(y^2-x^2)t+c_3\\ z(0)=s\\ c_3=\frac{s^2}{2}\\ z^2=2(y^2-x^2)t+s^2...............(3)

We need to get the value for s and ts \text{ and }t

From (1) and (2),

xy=2e2tt=ln(x2y)2\frac{x}{y}=2e^{2t}\\ t=\ln(\frac{x}{2y})^2

Substitute this into (1)

x=2seln(x2y)2x=2s.x24y2s=2y2xx=2se^{\ln (\frac{x}{2y})^2}\\ x=\frac{2s.x^2}{4y^2}\\ s=\frac{2y^2}{x}

Put the values if s and t into (3) to get the solution.

z2=2(y2x2)ln(x2y)2+4y4x2x2z2=2x2(y2x2)ln(x2y)2+4y4z^2=2(y^2-x^2)\ln (\frac{x}{2y})^2+\frac{4y^4}{x^2}\\ x^2z^2=2x^2(y^2-x^2)\ln (\frac{x}{2y})^2+4y^4

Thus is the solution and the characteristics are

x=2y2sx=\frac{2y^2}{s}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS