z(xzx−yzy)=y2−x2xzx−yzy=zy2−x2P=x,Q=−y,R=zy2−x2dtdx=P=xxdx=dt Integratelnx=t+c1x=C1etFrom the initial curve, we know that x(0)=2sC1=2sx=2set....................(1)Similarly, dtdy=Q=−y−lny=t+c2y=C2e−ty(0)=sC2=sy=se−t................(2)Also,dtdz=R=zy2−x2zdz=(y2−x2)dt2z2=(y2−x2)t+c3z(0)=sc3=2s2z2=2(y2−x2)t+s2...............(3)
We need to get the value for s and t
From (1) and (2),
yx=2e2tt=ln(2yx)2
Substitute this into (1)
x=2seln(2yx)2x=4y22s.x2s=x2y2
Put the values if s and t into (3) to get the solution.
z2=2(y2−x2)ln(2yx)2+x24y4x2z2=2x2(y2−x2)ln(2yx)2+4y4
Thus is the solution and the characteristics are
x=s2y2
Comments