F ( z , p , q ) = p q − z = 0 F(z,p,q)=pq-z=0 F ( z , p , q ) = pq − z = 0
Trivial solution:
z = f ( x + a y ) z=f(x+ay) z = f ( x + a y )
Let x + a y = u x+ay=u x + a y = u
then:
z = f ( u ) , ∂ u ∂ x = 1 , ∂ u ∂ y = a z=f(u), \frac{\partial u}{\partial x}=1, \frac{\partial u}{\partial y}=a z = f ( u ) , ∂ x ∂ u = 1 , ∂ y ∂ u = a
p = ∂ z ∂ x = d z d u ∂ u ∂ x = d z d u p=\frac{\partial z}{\partial x}=\frac{dz}{du}\frac{\partial u}{\partial x}=\frac{dz}{du} p = ∂ x ∂ z = d u d z ∂ x ∂ u = d u d z
q = ∂ z ∂ y = d z d u ∂ u ∂ y = a d z d u q=\frac{\partial z}{\partial y}=\frac{dz}{du}\frac{\partial u}{\partial y}=a\frac{dz}{du} q = ∂ y ∂ z = d u d z ∂ y ∂ u = a d u d z
Substituing values of p p p and q q q in the initial equation, we get:
a ( d z d u ) 2 = z a(\frac{dz}{du})^2=z a ( d u d z ) 2 = z
d z d u = z / a \frac{dz}{du}=\sqrt{z/a} d u d z = z / a
d u = d z / z / a du=dz/\sqrt{z/a} d u = d z / z / a
u = 2 z / a + b u=2\sqrt{z/a}+b u = 2 z / a + b
x + a y = 2 z / a + b x+ay=2\sqrt{z/a}+b x + a y = 2 z / a + b
If x = 0 , z = y 2 x=0, z=y^2 x = 0 , z = y 2 , then the solution is:
a y = 2 y / a + b ay=2y/\sqrt{a}+b a y = 2 y / a + b
y = b a − 2 / a , z = ( b a − 2 / a ) 2 y=\frac{b}{a-2/\sqrt{a}}, z=(\frac{b}{a-2/\sqrt{a}})^2 y = a − 2/ a b , z = ( a − 2/ a b ) 2
Also:
d z d u = − z / a \frac{dz}{du}=-\sqrt{z/a} d u d z = − z / a
x + a y = − 2 z / a + b x+ay=-2\sqrt{z/a}+b x + a y = − 2 z / a + b
a y = − 2 y / a + b ay=-2y/\sqrt{a}+b a y = − 2 y / a + b
y = b a + 2 / a , z = ( b a + 2 / a ) 2 y=\frac{b}{a+2/\sqrt{a}}, z=(\frac{b}{a+2/\sqrt{a}})^2 y = a + 2/ a b , z = ( a + 2/ a b ) 2
Comments