Question #154665

Solve zx+zy = z2 with the initial conditions z(x, 0)=f(x)

1
Expert's answer
2021-01-18T06:17:09-0500

P=1

Q=1

R=z2

dxP=dyQ=dzR\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}

dx1=dy1=dzz2\frac{dx}{1}=\frac{dy}{1}=\frac{dz}{z^2}

Multiplyers: -z2,1,1

-z2dx+dy+dz=0

-z2x+y+z=C1

Multiplyers: 1,-z2,1

dx-z2dy+dz=0

x-z2y+z=C2

The general solution is,

ϕ(c1,c2)=0\phi(c_{1},c_{2})=0

ϕ(z2x+y+z),(xz2y+z)=0\phi( -z^2x+y+z),(x-z^2y+z)=0


-z2x+z+y-C1=0

D=1+4x(y-C1)

z1=1+1+4x(yC1)2x=1+14xC12x=f(x)z_1=\frac{-1+\sqrt{1+4x(y-C_1)}}{-2x}=\frac{-1+\sqrt{1-4xC_1}}{-2x}=f(x)

14xC1=2xf(x)+1\sqrt{1-4xC_1}=-2xf(x)+1

4xC1=(2xf(x)+1)2+14xC_1=-{(-2xf(x)+1)}^2+1

C1(1)=(2xf(x)+1)2+14xC_1(1)=\frac{-{(-2xf(x)+1)}^2+1}{4x}

z2=11+4x(yC1)2x=114xC12x=f(x)z_2=\frac{-1-\sqrt{1+4x(y-C_1)}}{-2x}=\frac{-1-\sqrt{1-4xC_1}}{-2x}=f(x)

14xC1=2xf(x)1\sqrt{1-4xC_1}=2xf(x)-1

4xC1=(2xf(x)1)2+14xC_1=-{(2xf(x)-1)}^2+1

C1(2)=(2xf(x)1)2+14xC_1(2)=\frac{-{(2xf(x)-1)}^2+1}{4x}


-z2y+z+x-C2=0

As y=0

z=C2 - x= f(x)

C2=f(x) + x



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS