P=1
Q=1
R=z2
Pdx=Qdy=Rdz
1dx=1dy=z2dz
Multiplyers: -z2,1,1
-z2dx+dy+dz=0
-z2x+y+z=C1
Multiplyers: 1,-z2,1
dx-z2dy+dz=0
x-z2y+z=C2
The general solution is,
ϕ(c1,c2)=0
ϕ(−z2x+y+z),(x−z2y+z)=0
-z2x+z+y-C1=0
D=1+4x(y-C1)
z1=−2x−1+1+4x(y−C1)=−2x−1+1−4xC1=f(x)
1−4xC1=−2xf(x)+1
4xC1=−(−2xf(x)+1)2+1
C1(1)=4x−(−2xf(x)+1)2+1
z2=−2x−1−1+4x(y−C1)=−2x−1−1−4xC1=f(x)
1−4xC1=2xf(x)−1
4xC1=−(2xf(x)−1)2+1
C1(2)=4x−(2xf(x)−1)2+1
-z2y+z+x-C2=0
As y=0
z=C2 - x= f(x)
C2=f(x) + x
Comments