Question #154864

(D^2 -4DD^'+ 3D^'^2)z =0


1
Expert's answer
2021-01-13T16:50:22-0500

Rewrite this equation in the next view:

zxx4zxy+3zyy=0z_{xx}-4z_{xy}+3z_{yy}=0

Now lead it to canonical view. To do this, let input new variables:

{η=y+xξ=y+3x\begin{cases} \eta=y+x\\ \xi= y+3x\\ \end{cases}

So now we have:

zx=zη+3zξ\dfrac{\partial z}{\partial x}=\dfrac{\partial z}{\partial \eta}+3\dfrac{\partial z}{\partial \xi}

zy=zη+zξ\dfrac{\partial z}{\partial y}=\dfrac{\partial z}{\partial \eta}+\dfrac{\partial z}{\partial \xi}

2zx2=(zη+3zξ)2\dfrac{\partial^2 z}{\partial x^2}=(\dfrac{\partial z}{\partial \eta}+3\dfrac{\partial z}{\partial \xi})^2

2zy2=(zη+zξ)2\dfrac{\partial^2 z}{\partial y^2}=(\dfrac{\partial z}{\partial \eta}+\dfrac{\partial z}{\partial \xi})^2

2zxy=z2η2+42zξη+9z2ξ2\dfrac{\partial^2 z}{\partial x \partial y}=\dfrac{\partial z^2}{\partial \eta^2}+4\dfrac{\partial^2 z}{\partial \xi \partial\eta} + 9\dfrac{\partial z^2}{\partial \xi^2}

zηη+6zηξ+9zξξ4(zηη+4zηξ+9zξξ)+3(zηη+2zηξ+zξξ)=0z_{\eta\eta}+6z_{\eta\xi}+9z_{\xi\xi}-4(z_{\eta\eta}+4z_{\eta\xi} +9z_{\xi\xi})+3(z_{\eta\eta}+2z_{\eta\xi}+z_{\xi\xi})=0

The canonical equation:

6zξξ+zξη=06z_{\xi\xi}+z_{\xi\eta}=0

ξ(6zξ+zη)=0\dfrac{\partial}{\partial \xi}(6\dfrac{\partial z}{\partial \xi} + \dfrac{\partial z}{\partial \eta})=0

6zξ+zη=C1(η)6\dfrac{\partial z}{\partial \xi} + \dfrac{\partial z}{\partial \eta}=C_1(\eta)

ξ6=η=zC1(η)\dfrac{\partial \xi}{6} =\partial \eta=\dfrac{\partial z}{C_1(\eta)}

z1=C1(η)dη+C2z_1=\int C_1(\eta) d\eta +C_2

z2=C1(y+x)(y+3x)+C3z_2=C_1(y+x)*(y+3x)+C_3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS