Question #154961

(p+q)(z-px-qy)=1


1
Expert's answer
2021-01-13T18:28:34-0500

F=pzp2xpqy+qzpqxq2y1=0F=pz-p^2x-pqy+qz-pqx-q^2y-1=0

dxFp=dyFq=dzpFp+qFq=dpFx+pFz=dqFy+qFz\frac{dx}{F_p}=\frac{dy}{F_q}=\frac{dz}{pF_p+qF_q}=-\frac{dp}{F_x+pF_z}=-\frac{dq}{F_y+qF_z}

dxz2pxqyqx=dypy+zpx2qy=dzp(z2pxqyqx)+q(py+zpx2qy)=\frac{dx}{z-2px-qy-qx}=\frac{dy}{-py+z-px-2qy}=\frac{dz}{p(z-2px-qy-qx)+q(-py+z-px-2qy)}=

=dpp2pq+p(p+q)=dqpqq2+q(p+q)=-\frac{dp}{-p^2-pq+p(p+q)}=-\frac{dq}{-pq-q^2+q(p+q)}


dpp2pq+p(p+q)=dp0    p=a=const\frac{dp}{-p^2-pq+p(p+q)}=\frac{dp}{0}\implies p=a=const

dqpqq2+q(p+q)=dq0    q=b=const\frac{dq}{-pq-q^2+q(p+q)}=\frac{dq}{0}\implies q=b=const

Substitute values into the initial equatio.

Then:

(a+b)(zaxby)=1(a+b)(z-ax-by)=1

zaxby=c1z-ax-by=c_1


dxz2pxqyqx=dypy+zpx2qy=dp0\frac{dx}{z-2px-qy-qx}=\frac{dy}{-py+z-px-2qy}=\frac{dp}{0}

dydx=dp=ady-dx=dp=a

yx=c2y-x=c_2


The general solution:

F(c1,c2)=F(zaxby,yx)=0F(c_1,c_2)=F(z-ax-by, y-x)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS