F=pz−p2x−pqy+qz−pqx−q2y−1=0
Fpdx=Fqdy=pFp+qFqdz=−Fx+pFzdp=−Fy+qFzdq
z−2px−qy−qxdx=−py+z−px−2qydy=p(z−2px−qy−qx)+q(−py+z−px−2qy)dz=
=−−p2−pq+p(p+q)dp=−−pq−q2+q(p+q)dq
−p2−pq+p(p+q)dp=0dp⟹p=a=const
−pq−q2+q(p+q)dq=0dq⟹q=b=const
Substitute values into the initial equatio.
Then:
(a+b)(z−ax−by)=1
z−ax−by=c1
z−2px−qy−qxdx=−py+z−px−2qydy=0dp
dy−dx=dp=a
y−x=c2
The general solution:
F(c1,c2)=F(z−ax−by,y−x)=0
Comments