Using Charpit’s method, find a complete integral of the following equations: xpq + yq^2 = 1
f(x,y,z,p,q)=xpq+yq2-1=0,
"\\frac{dp}{\\frac{df}{dx}+p\\frac{df}{dz}}=\\frac{dq}{\\frac{df}{dy}+q\\frac{df}{dz}}=\\frac{dz}{-p\\frac{df}{dp}-q\\frac{df}{dq}}=\\frac{dx}{-\\frac{df}{dp}}=\\frac{dy}{-\\frac{df}{dq}}"
"\\frac{dp}{pq}=\\frac{dq}{q^2}=\\frac{dz}{-pxq-2yq^2-qxp}=\\frac{dx}{-xq}=\\frac{dy}{-xp-2yq}"
"\\frac{dq}{q}+ \\frac{dx}{x}=0 ,\nq\ndq\n\u200b\t\n + \nx\ndx\n\u200b\t\n =0"
ln(q)+ln(x)=a
ln(qx)=a
q=ea/x
"\\frac{dp}{p}- \\frac{dq}{q}=0"
ln(p)-ln(q)=b
ln(p/q)=b
p=ebq=e(a+b)/x
dz=pdx+qdy
dz=(e(a+b)/x)dx+(ea/x)dy",\\int dz=\\int e^{a+b}\/x dx+\\int e^a\/x dy"
z=e(a+b)ln(x)+(eay/x)+c
Comments
Leave a comment